Skip to main content
Log in

Effect of Cu on the corrosion resistance and electrochemical response of a Ni–Co–Cr–Mo alloy in acidic chloride solution

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of Cu addition varied from 0 to 4 mass% on the corrosion resistance and electrochemical response in Ni–Co–Cr–Mo alloys was investigated using potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott–Schottky analysis. Results indicate that the Ni–Co–Cr–Mo alloy with 2 mass% Cu exhibited the most superior corrosion resistance, and the presence of Cu greatly influenced the outer porous layer. The Ni–Co–Cr–Mo alloys’ corrosion resistance was not simply increasing with copper addition increasing from 0 to 4 mass%. The X-ray photoelectron spectroscopy etching analysis was also conducted to illustrate the fraction of Cu at various depths in the passive film, and the results reveal that a maximum limit on Cu content (appropriately 3.10 mass%) existed in the outermost surface in the present condition. Among the studied alloys, the Ni–Co–Cr–Mo–2%Cu alloy formed the thickest passive film with the lowest donor density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. B.R. Hou, X.G. Li, X.M. Ma, C.W. Du, D.W. Zhang, M. Zheng, W.C. Xu, D.Z. Lu, and F.B. Ma: The cost of corrosion in China. NPG Mater. Degrad. 1, 1 (2017).

    Article  Google Scholar 

  2. Q.F. Xu, K.W. Gao, W.T. Lv, and X.L. Pang: Effects of alloyed Cr and Cu on the corrosion behavior of low-alloy steel in a simulated groundwater solution. Corros. Sci. 102, 114 (2016).

    Article  CAS  Google Scholar 

  3. W. Chen, Q. Lei, Y. Jia, J. Yi, and B. Derby: Effect of addition of Ni and Si on the microstructure and mechanical properties of Cu–Zn alloys. J. Mater. Res. 32, 3137 (2017).

    Article  CAS  Google Scholar 

  4. Y.J. Qiang, S.T. Zhang, L. Guo, X.W. Zheng, B. Xiang, and S.J. Chen: Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid. Corros. Sci. 119, 68 (2017).

    Article  CAS  Google Scholar 

  5. L. Xie, Q. Lei, M. Wang, X. Sheng, and Z. Li: Effects of aging mechanisms on the exfoliation corrosion behavior of a spray deposited Al–Zn–Mg–Cu–Zr aluminum alloy. J. Mater. Res. 32, 1105 (2017).

    Article  CAS  Google Scholar 

  6. X.H. Chen, J. Li, X. Cheng, H.M. Wang, and Z. Huang: Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316 L using arc additive manufacturing. Mater. Sci. Eng., A 715, 307 (2018).

    Article  CAS  Google Scholar 

  7. W.J. Beom, R.S. Kalubarme, K.S. Yun, and C.J. Park: Effects of platinum nano electrodeposits on corrosion of carbon substrate. Appl. Surf. Sci. 257, 9694 (2011).

    Article  CAS  Google Scholar 

  8. J.H. Hong, S.H. Lee, J.G. Kim, and J.B. Yoon: Corrosion behaviour of copper containing low alloy steels in sulphuric acid. Corros. Sci. 54, 174 (2012).

    Article  CAS  Google Scholar 

  9. X.H. Hao, J.H. Dong, J. Wei, I.N. Etim, and W. Ke: Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank. Corros. Sci. 121, 84 (2017).

    Article  CAS  Google Scholar 

  10. C. Zhang, Y.P. Li, Y.H. Hou, N. Tang, K. Ohmura, Y. Koizumi, and A. Chiba: Corrosion resistance of Cu- and Fe-modified Ni–30Co–16Cr–15Mo alloy in aqueous hydrofluoric acid. Corros. Sci. 89, 81 (2014).

    Article  CAS  Google Scholar 

  11. Y.P. Li, X.D. Xu, Y.H. Hou, C. Zhang, F.L. Wang, K. Omura, Y. Koizumi, and A. Chiba: Regulating the passive film of NiCoCrMo alloy in hydrofluoric acid by small addition of Cu. Corros. Sci. 98, 119 (2015).

    Article  CAS  Google Scholar 

  12. Y. Liu, Z. Li, Y. Jiang, Y. Zhang, Z. Zhou, and Q. Lei: The microstructure evolution and properties of a Cu–Cr–Ag alloy during thermal-mechanical treatment. J. Mater. Res. 17, 1342 (2017).

    Google Scholar 

  13. P. Li, Y. Zhao, Y.Z. Liu, Y. Zhao, D.K. Xu, C.G. Yang, T. Zhang, T.Y. Gu, and K. Yang: Effect of Cu addition to 2205 duplex stainless steel on the resistance against pitting corrosion by the Pseudomonas aeruginosa biofilm. J. Mater. Sci. Technol. 33, 723 (2017).

    Article  CAS  Google Scholar 

  14. A. Pardo, M.C. Merino, M. Carboneras, A.E. Coy, and R. Arrabal: Pitting corrosion behaviour of austenitic stainless steels with Cu and Sn additions solution by small addition of Cu. Corros. Sci. 49, 510 (2007).

    Article  CAS  Google Scholar 

  15. J. Jiang, D.K. Xu, T. Xi, M.B. Shahzad, M.S. Khan, J.L. Zhao, X.M. Fan, C.G. Yang, T.Y. Gu, and K. Yang: Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel. Corros. Sci. 113, 46 (2016).

    Article  CAS  Google Scholar 

  16. X.G. Zhang, D. Zagidulin, and D.W. Shoesmith: Characterization of film properties on the Ni–Cr–Mo alloy C-2000. Electrochim. Acta 89, 814 (2013).

    Article  CAS  Google Scholar 

  17. T. Ujiro, S. Satoh, R.W. Staehle, and W.H. Smyrl: Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media. Corros. Sci. 43, 2185 (2001).

    Article  CAS  Google Scholar 

  18. E.E. Oguzie, J.B. Li, Y.Q. Liu, D.M. Chen, Y. Li, K. Yang, and F.H. Wang: The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels. Electrochim. Acta 55, 5028 (2010).

    Article  CAS  Google Scholar 

  19. S. Ningshen, U.K. Mudali, V.K. Mittal, and H.S. Khatak: Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels. Corros. Sci. 49, 481 (2007).

    Article  CAS  Google Scholar 

  20. D. Zagidulin, X.R. Zhang, J.G. Zhou, J.J. Noël, and D.W. Shoesmith: Characterization of surface composition on alloy 22 in neutral chloride solutions. Surf. Interface Anal. 45, 1014 (2013).

    Article  CAS  Google Scholar 

  21. Y.P. Li, X.R. Fan, N. Tang, H.K. Bian, Y.H. Hou, Y. Koizumi, and A. Chiba: Effects of partially substituting cobalt for nickel on the corrosion resistance of a Ni–16Cr–15Mo alloy to aqueous hydrofluoric acid. Corros. Sci. 78, 101 (2014).

    Article  CAS  Google Scholar 

  22. L.A.S. Ries, M.D.C. Belo, M.G.S. Ferreira, and I.L. Muller: Chemical composition and electronic structure of passive films formed on alloy 600 in acidic solution. Corros. Sci. 50, 676 (2008).

    Article  CAS  Google Scholar 

  23. B. Ter-Ovanessian, C. Alemany-Dumont, and B. Normand: Electronic and transport properties of passive films grown on different Ni–Cr binary alloys in relation to the pitting susceptibility. Electrochim. Acta 133, 373 (2014).

    Article  CAS  Google Scholar 

  24. B.B. Yang, J.X. Li, X.J. Gong, Y. Nie, and Y.P. Li: Effects of Cu addition on the corrosion behavior of NiCoCrMo alloys in neutral chloride solution. RSC Adv. 7, 40779 (2017).

    Article  CAS  Google Scholar 

  25. Thermo-Calc Software, Ni-based alloy database, TCW 5.0 (2013). Available at: http://www.thermocalc.com (accessed December 15, 2017).

  26. C.N. Cao: Principles of Electrochemistry of Corrosion (Chemical Industry Press, Beijing, 2008).

    Google Scholar 

  27. W.R. Osório, E.S. Freitas, and A. Garcia: EIS parameters and cell spacings of an Al–Bi alloy in NaCl solution. Electrochim. Acta 108, 781 (2013).

    Article  Google Scholar 

  28. A.K. Shukla and R. Balasubramaniam: Effect of surface treatment on electrochemical behavior of CP Ti, Ti–6Al–4V and Ti–13Nb–13Zr alloys in simulated human body fluid. Corros. Sci. 48, 1696 (2006).

    Article  CAS  Google Scholar 

  29. F. Mohammadi, T. Nickchi, M.M. Attar, and A. Alfantazi: EIS study of potentiostatically formed passive film on 304 stainless steel. Electrochim. Acta 56, 8727 (2011).

    Article  CAS  Google Scholar 

  30. W.R. Osório, L.C. Peixoto, and A. Garcia: The effects of Ag content and dendrite spacing on the electrochemical behavior of Pb–Ag alloys for Pb–acid battery components. J. Power Sources 238, 324 (2013).

    Article  Google Scholar 

  31. I. Cvijović-Alagić, Z. Cvijović, J. Bajat, and M. Rakin: Composition and processing effects on the electrochemical characteristics of biomedical titanium alloys. Corros. Sci. 83, 245 (2014).

    Article  Google Scholar 

  32. M.J. Hwang, E.J. Park, W.J. Moon, H.J. Song, and Y.J. Park: Characterization of passive layers formed on Ti–10 wt% (Ag, Au, Pd, or Pt) binary alloys and their effects on galvanic corrosion. Corros. Sci. 96, 152 (2015).

    Article  CAS  Google Scholar 

  33. A.W. Bott: Electrochemistry of semiconductors. Curr. Sep. 17, 87 (1998).

    CAS  Google Scholar 

  34. D.D. Macdonald and A. Sun: An electrochemical impedance spectroscopic study of the passive state on alloy-22. Electrochim. Acta 51, 1767 (2006).

    Article  CAS  Google Scholar 

  35. D.D. Macdonald, A. Sun, N. Priyantha, and P. Jayaweera: An electrochemical impedance study of alloy-22 in NaCl brine at elevated temperature: II. Reaction mechanism analysis. J. Electroanal. Chem. 572, 421 (2004).

    Article  CAS  Google Scholar 

  36. A. Fattah-alhosseini, Z. Masomi, and M. Mirzaei: Investigation of the electrochemical behavior of alloy C in NaOH solutions. Anal. Bioanal. Electrochem. 6, 646 (2014).

    Google Scholar 

  37. C. Marconnet, Y. Wouters, F. Miserque, C. Dagbert, J.P. Petit, A. Galerie, and D. Feron: Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution. Electrochim. Acta 54, 123 (2008).

    Article  CAS  Google Scholar 

  38. A. Fattah-alhosseini, M. Naseri, S.O. Gashti, S. Vafaeian, and M.K. Keshavarz: Effect of anodic potential on the electrochemical response of passive layers formed on the surface of coarse- and fine-grained pure nickel in borate buffer solutions. Corros. Sci. 131, 81 (2018).

    Article  CAS  Google Scholar 

  39. X.Y. San, B. Zhang, B. Wu, X.X. Wei, E.E. Oguzie, and X.L. Ma: Investigating the effect of Cu-rich phase on the corrosion behavior of super 304H austenitic stainless steel by TEM. Corros. Sci. 130, 143 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This investigation is supported by the Fundamental Research Funds for the Central Universities of Central South University, the Science Fund for Distinguished Young Scholars of Hunan Province, China (2016JJ1016), the project of Innovation and Entrepreneur Team introduced by Guangdong Province (201301G0105337290), and the Special Funds for Future Industrial Development of Shenzhen (No. HKHTZD20140702020004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunping Li or Qian Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Shi, C., Li, Y. et al. Effect of Cu on the corrosion resistance and electrochemical response of a Ni–Co–Cr–Mo alloy in acidic chloride solution. Journal of Materials Research 33, 3801–3808 (2018). https://doi.org/10.1557/jmr.2018.271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.271

Navigation