Skip to main content
Log in

High-temperature stable single carrier hole only device based on conjugated polymers

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin hole transport layers are important elements in organic semiconductor-based devices. Metal oxides are an encouraging material class for this purpose, as they may provide sufficient hole conduction in combination with excellent electron blocking properties. Both, long-term device stability, which may often be limited by the thermal stability of interfaces, and higher temperature processing steps, benefit strongly from the existence of thermally stable metal oxide interlayers. Provided that thermally stable electrodes can be fashioned, the stability of organic active layers—for example, in organic field effect transistors, light emitting diodes, or photovoltaic (OPV) devices can be investigated. Here, we apply this concept and report about the study of hole mobility (µh) in single-carrier-hole-only devices in dependence of thermal annealing up to the above the actual melting temperature of regio-regular poly(3-hexylthiophene-2,5-diyl) (P3HT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. P. Friederich, V. Meded, A. Poschlad, T. Neumann, V. Rodin, V. Stehr, F. Symalla, D. Danilov, G. Ludemann, R.F. Fink, I. Kondov, F. von Wrochem, and W. Wenzel: Molecular origin of the charge carrier mobility in small molecule organic semiconductors. Adv. Funct. Mater. 26, 5757 (2016).

    Article  CAS  Google Scholar 

  2. Y.F. Yao, H.L. Dong, and W.P. Hu: Charge transport in organic and polymeric semiconductors for flexible and stretchable devices. Adv. Mater. 28, 4513 (2016).

    Article  CAS  Google Scholar 

  3. H. Bassler and A. Kohler: Charge transport in organic semiconductors. In Unimolecular and Supramolecular Electronics I: Chemistry and Physics Meet at Metal-Molecule Interfaces, R.M. Metzger, ed. (Springer-Verlag Berlin, Berlin, 2012); p. 1.

    Google Scholar 

  4. L.H. Nguyen, H. Hoppe, T. Erb, S. Günes, G. Gobsch, and N.S. Sariciftci: Effects of annealing on the nanomorphology and performance of poly(alkylthiophene): Fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 17, 1071 (2007).

    Article  CAS  Google Scholar 

  5. U. Zhokhavets, T. Erb, H. Hoppe, G. Gobsch, and N. Serdar Sariciftci: Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films 496, 679 (2006).

    Article  CAS  Google Scholar 

  6. U. Zhokhavets, G. Gobsch, H. Hoppe, and N.S. Sariciftci: Anisotropic optical properties of thin poly(3-octylthiophene)-films as a function of preparation conditions. Synth. Met. 143, 113 (2004).

    Article  CAS  Google Scholar 

  7. U. Zhokhavets, G. Gobsch, H. Hoppe, and N.S. Sariciftci: A systematic study of the anisotropic optical properties of thin poly(3-octylthiophene)-films in dependence on growth parameters. Thin Solid Films 451–452, 69 (2004).

    Article  Google Scholar 

  8. C. Tanase, E.J. Meijer, P.W. Blom, and D.M. De Leeuw: Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003).

    Article  CAS  Google Scholar 

  9. E.J.W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs: Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films. Adv. Mater. 24, 839 (2012).

    Article  CAS  Google Scholar 

  10. A.J. Mozer, N.S. Sariciftci, A. Pivrikas, R. Österbacka, G. Juška, L. Brassat, and H. Bässler: Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: A comparative study. Phys. Rev. B 71, 035214 (2005).

    Article  Google Scholar 

  11. D. Gebeyehu, B. Maennig, J. Drechsel, K. Leo, and M. Pfeiffer: Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends. Sol. Energy Mater. Sol. Cells 79, 81 (2003).

    Article  CAS  Google Scholar 

  12. C. Kastner, J. Xuechen, D.A.M. Egbe, H. Ade, and H. Hoppe: Correlating domain purity with charge carrier mobility in bulk heterojunction polymer solar cells. Proc. SPIE 9184, 91840Z (2014).

    Article  Google Scholar 

  13. A. Diacon, L. Derue, C. Lecourtier, O. Dautel, G. Wantz, and P. Hudhomme: Cross-linkable azido C60-fullerene derivatives for efficient thermal stabilization of polymer bulkheterojunction solar cells. J. Mater. Chem. C 2, 7163 (2014).

    Article  CAS  Google Scholar 

  14. J. Harnonnet, M. Nakano, K. Nakano, H. Sugino, K. Takimiya, and K. Tajima: Bis(naphthothiophene diimide)indacenodithiophenes as acceptors for organic photovoltaics. Chem. Mater. 29, 9618 (2017).

    Article  Google Scholar 

  15. C.R. Singh, G. Gupta, R. Lohwasser, S. Engmann, J. Balko, M. Thelakkat, T. Thurn-Albrecht, and H. Hoppe: Correlation of charge transport with structural order in highly ordered melt-crystallized poly(3-hexylthiophene) thin films. J. Polym. Sci., Part B: Polym. Phys. 51, 943 (2013).

    Article  CAS  Google Scholar 

  16. N. Boulanger, J.C. Yu, and D.R. Barbero: SWNT nano-engineered networks strongly increase charge transport in P3HT. Nanoscale 6, 11633 (2014).

    Article  CAS  Google Scholar 

  17. N. Boulanger, V. Yu, M. Hilke, M.F. Toney, and D.R. Barbero: In situ probing of the crystallization kinetics of rr-P3HT on single layer graphene as a function of temperature. Phys. Chem. Chem. Phys. 19, 8496 (2017).

    Article  CAS  Google Scholar 

  18. Z.P. Kan, L. Colella, E.V. Canesi, A. Vorobiev, V. Skrypnychuk, G. Terraneo, D.R. Barbero, C. Bertarelli, R.C.I. MacKenzie, and P.E. Keivanidis: Charge transport control via polymer polymorph modulation in ternary organic photovoltaic composites. J. Mater. Chem. A 4, 1195 (2016).

    Article  CAS  Google Scholar 

  19. V. Skrypnychuk, N. Boulanger, V. Yu, M. Hilke, S.C.B. Mannsfeld, M.F. Toney, and D.R. Barbero: Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene. Adv. Funct. Mater. 25, 664 (2015).

    Article  CAS  Google Scholar 

  20. V. Skrypnychuk, N. Boulanger, V. Yu, M. Hilke, M.F. Toney, and D.R. Barbero: Reduced crystallinity and enhanced charge transport by melt annealing of an organic semiconductor on single layer graphene. J. Mater. Chem. C 4, 4143 (2016).

    Article  CAS  Google Scholar 

  21. O. Synooka, F. Kretschmer, M.D. Hager, M. Himmerlich, S. Krischok, D. Gehrig, F. Laquai, U.S. Schubert, G. Gobsch, and H. Hoppe: Modification of the active layer/PEDOT:PSS interface by solvent additives resulting in improvement of the performance of organic solar cells. ACS Appl. Mater. Interfaces 6, 11068 (2014).

    Article  CAS  Google Scholar 

  22. Y.Z. Guo and J. Robertson: Origin of the high work function and high conductivity of MoO3. Appl. Phys. Lett. 105, 222110 (2014).

    Article  Google Scholar 

  23. P. Murgatroyd: Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D: Appl. Phys. 3, 151 (1970).

    Article  Google Scholar 

  24. F. Herrmann, B. Muhsin, C.R. Singh, S. Shokhovets, G. Gobsch, H. Hoppe, and M. Presselt: Influence of interface doping on charge-carrier mobilities and sub-band gap absorption in organic solar cells. J. Phys. Chem. C 119, 9036 (2015).

    Article  CAS  Google Scholar 

  25. A.S.J. Dacuña: Modeling space-charge limited currents in organic semiconductors: Extracting trap density and mobility. Phys. Rev. B84, 195209.

  26. H.W. Ro, B. Akgun, B.T. O’Connor, M. Hammond, R.J. Kline, C.R. Snyder, S.K. Satija, A.L. Ayzner, M.F. Toney, C.L. Soles, and D.M. DeLongchamp: Poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester mixing in organic solar cells. Macromolecules 45, 6587 (2012).

    Article  CAS  Google Scholar 

  27. V. Skrypnychuk, G. Wetzelaer, P.I. Gordiichuk, S.C.B. Mannsfeld, A. Herrmann, M.F. Toney, and D.R. Barbero: Ultrahigh mobility in an organic semiconductor by vertical chain alignment. Adv. Mater. 28, 2359 (2016).

    Article  CAS  Google Scholar 

  28. G. Wang, J. Swensen, D. Moses, and A.J. Heeger: Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. J. Appl. Phys. 93, 6137 (2003).

    Article  CAS  Google Scholar 

  29. K.J. Baeg, D. Khim, D.Y. Kim, J.B. Koo, I.K. You, W.S. Choi, and Y.Y. Noh: High mobility top-gated poly(3-hexylthiophene) field-effect transistors with high work-function Pt electrodes. Thin Solid Films 518, 4024 (2010).

    Article  CAS  Google Scholar 

  30. P.D. Cunningham and L.M. Hayden: Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy. J. Phys. Chem. C 112, 7928 (2008).

    Article  CAS  Google Scholar 

  31. J.E. Northrup: Atomic and electronic structure of polymer organic semiconductors: P3HT, PQT, and PBTTT. Phys. Rev. B 76, 245202 (2007).

    Article  Google Scholar 

  32. R.J. Kline, M.D. McGehee, E.N. Kadnikova, J.S. Liu, J.M.J. Frechet, and M.F. Toney: Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38, 3312 (2005).

    Article  CAS  Google Scholar 

  33. R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, and A. Salleo: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038 (2013).

    Article  CAS  Google Scholar 

  34. J. Balko, G. Portale, R.H. Lohwasser, M. Thelakkat, and T. Thurn-Albrecht: Surface induced orientation and vertically layered morphology in thin films of poly(3-hexylthiophene) crystallized from the melt. J. Mater. Res. 32, 1957 (2017).

    Article  CAS  Google Scholar 

  35. S. Nau, N. Schulte, S. Winkler, J. Frisch, A. Vollmer, N. Koch, S. Sax, and E.J. List: Highly efficient color-stable deep-blue multilayer PLEDs: Preventing PEDOT:PSS-induced interface degradation. Adv. Mater. 25, 4420 (2013).

    Article  CAS  Google Scholar 

  36. I. Irfan, A. James Turinske, Z. Bao, and Y. Gao: Work function recovery of air exposed molybdenum oxide thin films. Appl. Phys. Lett. 101, 093305 (2012).

    Article  Google Scholar 

  37. P. Schulz, J.O. Tiepelt, J.A. Christians, I. Levine, E. Edri, E.M. Sanehira, G. Hodes, D. Cahen, and A. Kahn: High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 8, 31491 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

SA and HH are grateful for financial support from Deutsche Forschungsgemeinschaft (DFG) in the frame of “PhotoGenOrder” project. The authors appreciate for the AFM measurements supported by A. Paszuk at TU-Ilmenau.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahidul Alam or Harald Hoppe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, S., Fischer, P., Kästner, C. et al. High-temperature stable single carrier hole only device based on conjugated polymers. Journal of Materials Research 33, 1860–1867 (2018). https://doi.org/10.1557/jmr.2018.203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.203

Navigation