Skip to main content
Log in

Probing the influence of post-processing on microstructure and in situ compression failure with in silico modeling of 3D-printed scaffolds

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The post-processing treatment plays an important role in tailoring the mechanical and biological properties of the three-dimensional powder-printed porous scaffolds. Depending on scaffold material composition, a combination of post-processing treatments can be used to tailor these properties. This work probes into the impact of post-processing on the microstructure and deformation behavior of 3D-printed scaffolds. In this study, we have chosen CaSO4·xH2O (POP), a system for 3D powder printing and two different post-processing methodologies, namely chemical conversion and polymer infiltration. POP-based scaffolds were fabricated using water-based binder with up to 55% interconnected microporosity and moderate compressive strength of 1.5 MPa. Microcomputed tomography (µCT) is extensively utilized to determine the accuracy and efficacy of the adopted printing and post-processing approach. It was shown that the reproducibility of the fine features depends not only on the size but also on the presence of neighboring features. Crucially, µCT-based microstructure modeling and finite elemental simulation were attempted to computationally capture the compression behavior, in silico. Finally, in situ compression coupled with µCT imaging provided us an insight into fracture behavior of 3D powder-printed scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A. Bandyopadhyay, B. Krishna, W. Xue, and S. Bose: Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. J. Mater. Sci.: Mater. Med. 20, 29 (2009).

    Google Scholar 

  2. B. Basu: Biomaterials Science and Tissue Engineering: Principles and Methods (Cambridge University Press, Cambridge, UK, 2017).

    Google Scholar 

  3. B. Basu: Biomaterials for Musculoskeletal Regeneration: Concepts (Springer, New York, 2016).

    Google Scholar 

  4. A. Kumar, S. Mandal, S. Barui, R. Vasireddi, U. Gbureck, M. Gelinsky, and B. Basu: Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Mater. Sci. Eng., R 103, 1 (2016).

    Google Scholar 

  5. S. Barui, S. Chatterjee, S. Mandal, A. Kumar, and B. Basu: Microstructure and compression properties of 3D powder printed Ti–6Al–4V scaffolds with designed porosity: Experimental and computational analysis. Mater. Sci. Eng., C 70, 812 (2017).

    CAS  Google Scholar 

  6. S. Barui, S. Mandal, and B. Basu: Thermal inkjet 3D powder printing of metals and alloys: Current status and challenges. Curr. Opin. Biomed. Eng. 2, 116–123 (2017).

    Google Scholar 

  7. A. Farzadi, V. Waran, M. Solati-Hashjin, Z.A.A. Rahman, M. Asadi, and N.A.A. Osman: Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering. Ceram. Int. 41, 8320–8330 (2015).

    CAS  Google Scholar 

  8. S. Meininger, S. Mandal, A. Kumar, J. Groll, B. Basu, and U. Gbureck: Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomater. 31, 401 (2016).

    CAS  Google Scholar 

  9. E. Vorndran, M. Klarner, U. Klammert, L.M. Grover, S. Patel, J.E. Barralet, and U. Gbureck: 3D powder printing of β-tricalcium phosphate ceramics using different strategies. Adv. Eng. Mater. 10, B67 (2008).

    CAS  Google Scholar 

  10. K. Lu, M. Hiser, and W. Wu: Effect of particle size on three dimensional printed mesh structures. Powder Technol. 192, 178 (2009).

    CAS  Google Scholar 

  11. A. Butscher, M. Bohner, C. Roth, A. Ernstberger, R. Heuberger, N. Doebelin, P. Rudolf von Rohr, and R. Müller: Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater. 8, 373 (2012).

    CAS  Google Scholar 

  12. S. Tarafder, V.K. Balla, N.M. Davies, A. Bandyopadhyay, and S. Bose: Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regener. Med. 7, 631 (2013).

    CAS  Google Scholar 

  13. Z. Zhou, E. Cunningham, A. Lennon, H.O. McCarthy, F. Buchanan, S.A. Clarke, and N. Dunne: Effects of poly(ε-caprolactone) coating on the properties of three-dimensional printed porous structures. J. Mech. Behav. Biomed. Mater. 70, 68–83 (2017).

    CAS  Google Scholar 

  14. U. Gbureck, E. Vorndran, F.A. Müller, and J.E. Barralet: Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J. Controlled Release 122, 173 (2007).

    CAS  Google Scholar 

  15. M. Asadi-Eydivand, M. Solati-Hashjin, A. Farzad, and N.A.A. Osman: Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robot. Comput. Integrated Manuf. 37, 57 (2016).

    Google Scholar 

  16. J. Suwanprateeb, F. Thammarakcharoen, K. Wasoontararat, and W. Suvannapruk: Influence of printing parameters on the transformation efficiency of 3D-printed plaster of paris to hydroxyapatite and its properties. Rapid Prototyp. J. 18, 490 (2012).

    Google Scholar 

  17. M. Dziadek, E. Stodolak-Zych, and K. Cholewa-Kowalska: Biodegradable ceramic-polymer composites for biomedical applications: A review. Mater. Sci. Eng., C 71, 1175 (2017).

    CAS  Google Scholar 

  18. R. Lowmunkong, T. Sohmura, J. Takahashi, Y. Suzuki, S. Matsuya, and K. Ishikawa: Transformation of 3DP gypsum model to HA by treating in ammonium phosphate solution. J. Biomed. Mater. Res., Part B 80, 386 (2007).

    Google Scholar 

  19. R. Lowmunkong, T. Sohmura, Y. Suzuki, S. Matsuya, and K. Ishikawa: Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3D printing method. J. Biomed. Mater. Res., Part B 90B, 531 (2009).

    CAS  Google Scholar 

  20. M. Asadi-Eydivand, M. Solati-Hashjin, S.S. Shafiei, S. Mohammadi, M. Hafezi, and N.A.A. Osman: Structure, properties, and in vitro behavior of heat-treated calcium sulfate scaffolds fabricated by 3D printing. PLoS One 11, e0151216 (2016).

    Google Scholar 

  21. M.L. Bouxsein, S.K. Boyd, B.A. Christiansen, R.E. Guldberg, K.J. Jepsen, and R. Müller: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468 (2010).

    Google Scholar 

  22. D. Sarkar, S. Mandal, B. Reddy, N. Bhaskar, D. Sundaresh, and B. Basu: ZrO2-toughened Al2O3-based near-net shaped femoral head: Unique fabrication approach, 3D microstructure, burst strength and muscle cell response. Mater. Sci. Eng., C 77, 1216 (2017).

    CAS  Google Scholar 

  23. D. Sarkar, B. Sambi Reddy, S. Mandal, M. RaviSankar, and B. Basu: Uniaxial compaction-based manufacturing strategy and 3D microstructural evaluation of near-net-shaped ZrO2-toughened Al2O3 acetabular socket. Adv. Eng. Mater. 18, 1634–1644 (2016).

    CAS  Google Scholar 

  24. K. Hammonds and I. Baker: Quantifying damage in polycrystalline ice via X-ray computed micro-tomography. Acta Mater. 127, 463–470 (2017).

    CAS  Google Scholar 

  25. J. Réthoré, N. Limodin, J-Y. Buffière, S. Roux, and F.c. Hild: Three-dimensional analysis of fatigue crack propagation using X-ray tomography, digital volume correlation and extended finite element simulations. Procedia IUTAM 4, 151 (2012).

    Google Scholar 

  26. N. Limodin, J. Rethore, J-Y. Buffiere, F. Hild, S. Roux, W. Ludwig, J. Rannou, and A. Gravouil: Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation. Acta Mater. 58, 2957 (2010).

    CAS  Google Scholar 

  27. N. Limodin, L. Salvo, E. Boller, M. Suéry, M. Felberbaum, S. Gailliègue, and K. Madi: In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al–10 wt% Cu alloy. Acta Mater. 57, 2300 (2009).

    CAS  Google Scholar 

  28. N. Limodin, L. Salvo, M. Suéry, and M. DiMichiel: In situ investigation by X-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al–15.8 wt% Cu alloy. Acta Mater. 55, 3177 (2007).

    CAS  Google Scholar 

  29. H.A. Bale, A. Haboub, A.A. MacDowell, J.R. Nasiatka, D.Y. Parkinson, B.N. Cox, D.B. Marshall, and R.O. Ritchie: Real-time quantitative imaging of failure events in materials under load at temperatures above 1600 °C. Nat. Mater. 12, 40 (2013).

    CAS  Google Scholar 

  30. S.A. McDonald, G. Dedreuil-Monet, Y.T. Yao, A. Alderson, and P.J. Withers: In situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric foams under tension. Phys. Status Solidi B 248, 45 (2011).

    CAS  Google Scholar 

  31. C. Petit, S. Meille, and E. Maire: Cellular solids studied by X-ray tomography and finite element modeling—A review. J. Mater. Res. 28, 2191 (2013).

    CAS  Google Scholar 

  32. J-W. Cao and M. Sakai: Crack-face fiber bridging: Finite element analysis, analytical model, and experimental result. J. Mater. Res. 11, 1537 (1996).

    CAS  Google Scholar 

  33. L. Zhang, J.M. Ferreira, S. Olhero, L. Courtois, T. Zhang, E. Maire, and J.C. Rauhe: Modeling the mechanical properties of optimally processed cordierite–mullite–alumina ceramic foams by X-ray computed tomography and finite element analysis. Acta Mater. 60, 4235 (2012).

    CAS  Google Scholar 

  34. N. Michailidis, F. Stergioudi, H. Omar, D. Papadopoulos, and D. Tsipas: Experimental and FEM analysis of the material response of porous metals imposed to mechanical loading. Colloids Surf., A 382, 124 (2011).

    CAS  Google Scholar 

  35. C. D’Angelo, A. Ortona, and P. Colombo: Finite element analysis of reticulated ceramics under compression. Acta Mater. 60, 6692 (2012).

    Google Scholar 

  36. S.C. Cox, J.A. Thornby, G.J. Gibbons, M.A. Williams, and K.K. Mallick: 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater. Sci. Eng., C 47, 237 (2015).

    CAS  Google Scholar 

  37. W. Xue, A. Bandyopadhyay, and S. Bose: Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering. J. Biomed. Mater. Res., Part B 91, 831 (2009).

    Google Scholar 

  38. V. Vega, J. Clements, T. Lam, A. Abad, B. Fritz, N. Ula, and O.S. Es-Said: The effect of layer orientation on the mechanical properties and microstructure of a polymer. J. Mater. Eng. Perform. 20, 978 (2011).

    CAS  Google Scholar 

  39. M. Castilho, C. Moseke, A. Ewald, U. Gbureck, J. Groll, I. Pires, J. Teßmar, and E. Vorndran: Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6, 015006 (2014).

    CAS  Google Scholar 

  40. M. Castilho, M. Dias, U. Gbureck, J. Groll, P. Fernandes, I. Pires, B. Gouveia, J. Rodrigues, and E. Vorndran: Fabrication of computationally designed scaffolds by low temperature 3D printing. Biofabrication 5, 035012 (2013).

    CAS  Google Scholar 

  41. S. Mandal, S. Meininger, U. Gbureck, and B. Basu: 3D powder printed tetracalcium phosphate scaffold with phytic acid binder: Fabrication, microstructure and in situ X-ray tomography analysis of compressive failure. J. Mater. Sci.: Mater. Med. 29, 29 (2018).

    Google Scholar 

  42. L. Vincent and P. Soille: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell., 13, 583–598 (1991).

    Google Scholar 

  43. H-C. Hege, D. Stalling, M. Seebass, and M. Zockler: A Generalized Marching Cubes Algorithm Based on Non-binary; Technical Report No. SC-97-05 (Konrad-Zuse-Zentrum (ZIB), Berlin, 1997).

    Google Scholar 

  44. M. Zilske, H. Lamecker, and S. Zachow: Adaptive remeshing of non-manifold surfaces. Eurographics 27, 1–7 (2008). (short papers).

    Google Scholar 

  45. R. Löhner and P. Parikh: Generation of three-dimensional unstructured grids by the advancing-front method. Int. J. Numer. Methods Fluids 8, 1135 (1988).

    Google Scholar 

  46. H. Jin and R. Tanner: Generation of unstructured tetrahedral meshes by advancing front technique. Int. J. Numer. Meth. Eng. 36, 1805 (1993).

    Google Scholar 

  47. H. Jin and N-E. Wiberg: Two-dimensional mesh generation, adaptive remeshing and refinement. Int. J. Numer. Meth. Eng. 29, 1501 (1990).

    Google Scholar 

  48. M. Castilho, B. Gouveia, I. Pires, J. Rodrigues, M. Pereira, R.I. Campbell, and R.I. Campbell: The role of shell/core saturation level on the accuracy and mechanical characteristics of porous calcium phosphate models produced by 3D printing. Rapid Prototyp. J. 21, 43–55 (2015).

    Google Scholar 

  49. Z. Zhou, F. Buchanan, C. Mitchell, and N. Dunne: Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater. Sci. Eng., C 38, 1 (2014).

    CAS  Google Scholar 

  50. A. Farzadi, M. Solati-Hashjin, M. Asadi-Eydivand, and N.A.A. Osman: Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering. PLoS One 9, e108252 (2014).

    Google Scholar 

  51. G. Vekinis, M. Ashby, and P. Beaumont: Plaster of paris as a model material for brittle porous solids. J. Mater. Sci. 28, 3221 (1993).

    CAS  Google Scholar 

  52. P. Coquard, R. Boistelle, L. Amathieu, and P. Barriac: Hardness, elasticity modulus and flexion strength of dry set plaster. J. Mater. Sci. 29, 4611 (1994).

    CAS  Google Scholar 

  53. K.K. Phani, S. Niyogi, A. Maitra, and M. Roychaudhury: Strength and elastic modulus of a porous brittle solid: An acousto-ultrasonic study. J. Mater. Sci. 21, 4335 (1986).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support provided by Department of Science and Technology, Government of India and Department of Biotechnology, Government of India under different research grants to carry out research activities. S. Mandal would like to thank Dr. Alok Kumar, for his encouragement at the starting of this study, Barthi R, for her assistance in acquiring XRD and SEM data, and Dr. Subhomoy Chatterjee, for earnestly extending help in the finite elemental analysis related procedures. We also thank the anonymous reviewers for their constructive criticism in improving the quality of the manuscript and the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Basu.

Supplementary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Basu, B. Probing the influence of post-processing on microstructure and in situ compression failure with in silico modeling of 3D-printed scaffolds. Journal of Materials Research 33, 2062–2076 (2018). https://doi.org/10.1557/jmr.2018.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.188

Navigation