Skip to main content
Log in

Effect of laser hatch style on densification behavior, microstructure, and tribological performance of aluminum alloys by selective laser melting

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A systematic investigation of influence of the laser hatch style on densification behavior, microstructure, and tribological performance of aluminum parts’ preparation by selective laser melting (SLM) was implemented in this study. The scans with checker board (CB) style left better processing quality of surface morphology and few metallurgical defects to SLM parts in comparison with single fill and cross fill styles, hence leading to a relatively high densification level (99.42%). The CB style of shorter scan length left higher undercooling degree in small checker areas compared with other longer scan lengths, leading to finer equiaxed grains to the solidification microstructure. Accordingly, an enhanced mean microhardness of 129.7 HV0.1 was obtained in this hatch style, due to the grain refinement strengthening effect. The lowest coefficient of friction of 0.49 and wear rate of 2.43 × 10−4 mm3/(N m) were obtained. The improved densification level and formation of refined equiaxed grain and evenly distributed ring-shaped Si particles formed in CB parts changed the mechanism of material removal during sliding from the abrasion to adhesion of the tribolayer, significantly improving the wear resistance of SLM aluminum parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. D.D. Gu, H.Q. Wang, D.H. Dai, F. Chang, W. Meiners, Y.C. Hagedorn, K. Wissenbach, I. Kelbassa, and R. Poprawe: Densification behavior, microstructure evolution, and wear property of TiC nanoparticle reinforced AlSi10Mg bulk-form nanocomposites prepared by selective laser melting. J. Laser Appl. 27, S17003 (2015).

    Article  Google Scholar 

  2. S. Siddique, M. Awd, J. Tenkamp, and F. Walther: High and very high cycle fatigue failure mechanisms in selective laser melted aluminum alloys. J. Mater. Res. 32, 1 (2017).

    Article  Google Scholar 

  3. H.Y. Chen, D.D. Gu, D.H. Dai, C.L. Ma, and M.J. Xia: Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts. Mater. Sci. Eng., A 682, 279 (2017).

    Article  CAS  Google Scholar 

  4. H. Attar, M. Bonisch, M. Calin, L.C. Zhang, K. Zhuravleva, A. Funk, S. Scudino, C. Yang, and J. Eckert: Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J. Mater. Res. 29, 1941 (2014).

    Article  CAS  Google Scholar 

  5. D.D. Gu and Y.F. Shen: Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. J. Alloys Compd. 432, 163 (2007).

    Article  CAS  Google Scholar 

  6. S.B. Sun, L.J. Zheng, Y.Y. Liu, J.H. Liu, and H. Zhang: Characterization of Al–Fe–V–Si heat-resistant aluminum alloy components fabricated by selective laser melting. J. Mater. Res. 30, 1661 (2015).

    Article  CAS  Google Scholar 

  7. C.L. Ma, D.D. Gu, D.H. Dai, W.H. Chen, F. Chang, P.P. Yuan, and Y.F. Shen: Aluminum-based nanocomposites with hybrid reinforcements prepared by mechanical alloying and selective laser melting consolidation. J. Mater. Res. 30, 2816 (2015).

    Article  CAS  Google Scholar 

  8. M. Simonelli, Y.Y. Tse, and C. Tuck: The formation of alpha plus beta microstructure in as-fabricated selective laser melting of Ti–6Al–4V. J. Mater. Res. 29, 2028 (2014).

    Article  CAS  Google Scholar 

  9. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King: Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36 (2016).

    Article  CAS  Google Scholar 

  10. E.A. Jagle, P.P. Choi, J. Van Humbeeck, and D. Raabe: Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J. Mater. Res. 29, 2072 (2014).

    Article  Google Scholar 

  11. A. Raghavan, H.L. Wei, T.A. Palmer, and T. DebRoy: Heat transfer and fluid flow in additive manufacturing. J. Laser Appl. 25, 052006 (2013).

    Article  Google Scholar 

  12. H.Y. Chen, D.D. Gu, J.P. Xiong, and M.J. Xia: Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting. J. Mater. Process. Technol. 250, 99 (2017).

    Article  Google Scholar 

  13. Y. Sun, A. Moroz, and K. Alrbaey: Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel. J. Mater. Eng. Perform. 23, 518 (2014).

    Article  CAS  Google Scholar 

  14. Z.W. Chen, M.A.L. Phan, and K. Darvish: Grain growth during selective laser melting of a Co–Cr–Mo alloy. J. Mater. Sci. 52, 7415 (2017).

    Article  CAS  Google Scholar 

  15. L. Thijs, S. Montero, L. Maria, R. Wauthle, Q. Xie, J.P. Kruth, and J. Van Humbeeck: Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Mater. 61, 4657 (2013).

    Article  CAS  Google Scholar 

  16. C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu, and T. Kuang: Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 134, 23 (2017).

    Article  CAS  Google Scholar 

  17. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 60, 2229 (2012).

    Article  CAS  Google Scholar 

  18. D.D. Gu, Y-C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60, 3849 (2012).

    Article  CAS  Google Scholar 

  19. D.D. Gu and D.H. Dai: Role of melt behavior in modifying oxidation distribution using an interface incorporated model in selective laser melting of aluminum-based material. J. Appl. Phys. 120, 083104 (2016).

    Article  Google Scholar 

  20. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 57, 133 (2012).

    Article  CAS  Google Scholar 

  21. J.P. Kruth, L. Froyen, V.J. Van, P. Mercelis, M. Rombouts, and B. Lauwers: Selective laser melting of iron-based powder. J. Mater. Process. Technol. 149, 616 (2004).

    Article  CAS  Google Scholar 

  22. H.Y. Chen and D.D. Gu: Effect of metallurgical defect and phase transition on geometric accuracy and wear resistance of iron-based parts fabricated by selective laser melting. J. Mater. Res. 31, 1477 (2016).

    Article  CAS  Google Scholar 

  23. D.D. Gu, Y-C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM): Densification, growth mechanism and wear behavior. Compos. Sci. Technol. 71, 1612 (2011).

    Article  CAS  Google Scholar 

  24. A. Simchi: Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater. Sci. Eng., A 428, 148 (2006).

    Article  Google Scholar 

  25. J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty: Simultaneous enhancements of strength and toughness in an Al–12Si alloy synthesized using selective laser melting. Acta Mater. 115, 285 (2016).

    Article  CAS  Google Scholar 

  26. K. Arafune and A. Hirata: Thermal and solutal Marangoni convection in In–Ga–Sb system. J. Cryst. Growth 197, 811 (1999).

    Article  CAS  Google Scholar 

  27. R.D. Li, J.H. Liu, Y.S. Shi, L. Wang, and W. Jiang: Balling behavior of stainless steel and nickel powder during selective laser melting process. Int. J. Adv. Des. Manuf. Technol. 59, 1025 (2012).

    Article  Google Scholar 

  28. D. Wang, C. Song, Y. Yang, and Y. Bai: Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Des. 100, 291 (2016).

    Article  CAS  Google Scholar 

  29. S.F. Wen, S. Li, Q.S. Wei, C.Z. Yan, S. Zhang, and Y.S. Shi: Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J. Mater. Process. Technol. 214, 2660 (2014).

    Article  Google Scholar 

  30. E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 74, 401 (2015).

    Article  CAS  Google Scholar 

  31. K.G. Prashanth, S. Scudino, and J. Eckert: Defining the tensile properties of Al–12Si parts produced by selective laser melting. Acta Mater. 126, 25 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was financially supported by the National Natural Science Foundation of China (Grant No. 51405082), the Natural Science Foundation of Guangdong Province (Grant No. 2014A030310301), and the Science and Technology Innovation Platform of Foshan City, Guangdong Province, China. (Grant No. 2016AG100341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhou, Y., Fan, Y. et al. Effect of laser hatch style on densification behavior, microstructure, and tribological performance of aluminum alloys by selective laser melting. Journal of Materials Research 33, 1713–1722 (2018). https://doi.org/10.1557/jmr.2018.166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.166

Navigation