Skip to main content
Log in

Thermal profile shaping and loss impacts of strain annealing on magnetic ribbon cores

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The use of the advanced manufacturing technique of strain annealing for nanocomposite magnetic ribbons enables control of relative permeabilities and spatially dependent permeability profiles. Tuned permeability profiles enable enhanced control of the magnetic flux throughout magnetic cores, including the concentration or dispersion of the magnetic flux over specific regions. Due to the correlation between local core losses and temperature rises with the local magnetic flux, these profiles can be tuned at the component level for improved losses and reduced steady-state temperatures. We present analytical models for a number of assumed permeability profiles. This work shows significant reductions in the peak temperature rise with overall core losses impacted to a lesser extent. Controlled strain annealing profiles can also adjust the location of hotspots within a component for optimal cooling schemes. As a result, magnetic designs can have improved performance for a range of potential operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

Abbreviations

a:

Area of a material for thermal impedance

α:

Frequency-dependent loss exponent

B:

Magnetic flux density

B avg :

Average flux density over toroid profile

β:

Magnetic flux density loss exponent

Bz[a, b]:

Incomplete Beta function

c:

Exponent in exponential permeability profile

C:

Circumference of a circular path

C c :

Thermal capacitance of toroid core

f:

Frequency of excitation waveform

F:

Core fill factor, ratio of total material thickness to core thickness

g:

Ratio between slope and offset magnetic permeability terms

h:

Height of magnetic ribbon in the z direction

I:

Current flowing through excitation coil

K:

Power loss scalar term

k t :

Thermal conductivity

k c :

Thermal conductivity of the magnetic ribbon

k G :

Thermal conductivity of the gap between magnetic ribbon layers

λ:

Ratio between outer and inner radius of toroid

L:

Magnetic inductance of wound toroid

l:

Length of a material for thermal impedance

λ:

Ratio between outer radius and inner radius of a toroid core

L r :

Length of ribbon

l r :

Length of ribbon to apply strain for a given radius

l G :

Length of region between ribbon layers

l Gz :

Length of region between ribbon material and external free space

L n :

Layer number # of a wound toroid

μ:

Magnetic permeability of core material

μ0:

Magnetic permeability of free space

μ1:

Magnetic permeability following the graded with offset profile

μc:

Magnetic permeability following the constant profile

μe:

Magnetic permeability following the exponential profile

μs:

Slope term for the graded and offset graded profiles

N:

Number of turns of excitation coil

N L :

Total number of layers of ribbon for the full toroid core

n:

Ribbon layer number between 1 and NL

\(\hat P\) :

Permeance of magnetic core

ϕ:

Magnetic flux

P:

Power loss due to magnetic core excitation

P loc :

Power loss in the local region of the core

Q:

Heat injection into the core

r:

Radius of layer of inspection for toroid core

r i :

Inner radius of toroid core

R:

Thermal impedance

R t :

Tangential thermal impedance

R r :

Radial thermal impedance

t:

Magnetic ribbon thickness

T:

Temperature of magnetic core

T amb :

Ambient temperature

V:

Volume of magnetic material

References

  1. R.L. Steigerwald, R.W. De Doncker, and M.H. Kheraluwala: A comparison of high power DC-to-DC soft-switched converter topologies. In Proceedings of 1994 IEEE Industry Applications Society Annual Meeting, Vol. 2 (IEEE, Denver, Colorado, 1994); p. 1090.

    Chapter  Google Scholar 

  2. V.M. Iyer, S. Gulur, and S. Bhattacharya: Hybrid control strategy to extend the ZVS range of a dual active bridge converter. In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC) (IEEE, Tampa, Florida, 2017); p. 2035.

    Chapter  Google Scholar 

  3. R. Beddingfield, D. Storelli, and S. Bhattacharya: A novel dual voltage source converter for magnetic material characterization with trapezoidal excitation. In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC) (IEEE, Tampa, Florida, 2017); p. 1659.

    Chapter  Google Scholar 

  4. R. Beddingfield and S. Bhattacharya: Multi-parameter magnetic material characterization for high power medium frequency converters. In The Minerals, Metals & Materials Series (Springer, San Diego, California, 2017); p. 693.

    Google Scholar 

  5. N. Aronhime, V. Degeorge, V. Keylin, P. Ohodnicki, and M. McHenry: The effects of strain-annealing on tuning permeability and lowering losses in Fe–Ni-based metal amorphous nanocomposites. JOM 69, 2164 (2017).

    Article  CAS  Google Scholar 

  6. A. Leary, V. Keylin, A. Devaraj, V. DeGeorge, P. Ohodnicki, and M.E. McHenry: Stress induced anisotropy in Co-rich magnetic nanocomposites for inductive applications. J. Mater. Res 31, 3089 (2016).

    Article  CAS  Google Scholar 

  7. A. Leary, P. Ohodnicki, M. McHenry, and V. Keylin: Tunable anisotropy of Co-based nanocomposites for magnetic field sensing and inductor applications. U.S. Patent App. 15/205,217, 2016.

  8. V. Keylin, P. Ohodnicki, A. Leary, and M. McHenry: Stress induced anisotropy in CoFeMn soft magnetic nanocomposites. J. App. Phys. 117, 17A338 (2015).

    Article  Google Scholar 

  9. A. Leary, P. Ohodnicki, M. McHenry, V. Keylin, J. Huth, and S. Kernion: Tunable anisotropy of Co-based nanocomposites for magnetic field sensing and inductor applications. U.S. Patent No. 20140338793A1, 2016.

  10. S. Kernion, P. Ohodnicki, Jr., J. Grossmann, A. Leary, S. Shen, and V. Keylin: Giant induced magnetic anisotropy in strain annealed Co-based nanocomposite alloys. Appl. Phys. Lett. 101, 102408 (2012).

    Article  Google Scholar 

  11. P. Ohodnicki, J. Long, D. Laughlin, M. McHenry, V. Keylin, and J. Huth: Composition dependence of field induced anisotropy in ferromagnetic (Co, Fe)89Zr7B4 and (Co, Fe)88Zr7B4Cu1 amorphous and nanocrystalline ribbons. J. App. Phys. 104, 113909 (2008).

    Article  Google Scholar 

  12. D. Jiles and D. Atherton: Theory of ferromagnetic hysteresis. J. Magn. Magn Mater. 61, 48 (1986).

    Article  Google Scholar 

  13. A. Brockmeyer and L. Schulting: Modeling of dynamic losses in magnetic material. In 5th European Conference on Power Electronics and. Applications, EPE’93, Vol. 3 (EPE Associations, Brighton, United Kingdom, 1993); p. 112.

    Google Scholar 

  14. J. Muhlethaler, J. Biela, J.W. Kolar, and A. Ecklebe: Core losses under the DC bias condition based on Steinmetz parameters. IEEE Trans. Power Electron. 27, 953 (2012).

    Article  Google Scholar 

  15. J. Muhlethaler, J. Biela, J.W. Kolar, and A. Ecklebe: Improved core-loss calculation for magnetic components employed in power electronic systems. IEEE Trans. Power Electron. 27, 964 (2012).

    Article  Google Scholar 

  16. L. Havez: Contribution au Prototypage Virtuel 3D par Eléments Finis de Composants Magnétiques Utilisés en Electronique de Puissance. Ph.D. thesis, National Polytechnic Institute of Toulouse, Toulouse, France, 2016.

  17. B. Cougo: Optimal cross section shape of tape wound cores. Euro. Conf. Pow. Elec. App. 17, 1 (2015).

    Google Scholar 

  18. S. Kasap: Essential Heat Transfer for Electrical Engineers (E-Book, Saskatchewan, CA, 2003).

    Google Scholar 

  19. W.G. Odendaal and J.A. Ferreira: A thermal model for high-frequency magnetic components. IEEE Trans. Ind. Appl. 35, 924 (1999).

    Article  Google Scholar 

  20. A. Hilal, M.A. Raulet, and C. Martin: Magnetic components dynamic modeling with thermal coupling for circuit simulators. IEEE Trans. Magn. 50, 1 (2014).

    Article  Google Scholar 

  21. A.K. Das, Z. Wei, S. Vaisambhayana, S. Cao, H. Tian, A. Tripathi, and P. Kjær: Thermal modeling and transient behavior analysis of a medium-frequency high-power transformer. In 43rd Annual Conference of the IEEE Industrial Electronics Society (IEEE, Beijing, China, 2017); p. 2213.

    Google Scholar 

  22. N. Laaidi, S. Belattar, and A. Elbaloutti: Thermal and thermographical modeling of the rust effect in oil conduits. Eur. Conf. Non-Dest. Test. ECNDT 2010, 1.5.19 (2010).

  23. 3M Thermally Conductive Epoxy Adhesive TC-2810 3M: Electronics Materials Solutions Division. Technical Report, Electronics Materials Solutions Division, St. Paul, Minnesota, 2014.

    Google Scholar 

  24. A. Leary, P. Ohodnicki, and M. McHenry: Soft magnetic materials in high-frequency, high-power conversion applications. JOM 64, 772 (2012).

    Article  Google Scholar 

  25. R. Ridley and A. Nace: Modeling ferrite core losses. Switching Power. Mag. 2006, 1 (2006).

  26. “L Material” Internet: Available at: https://www.mag-inc.com/Products/Ferrite-Cores/L-Material (accessed December 10, 2017).

  27. P. Xuewei, U.R. Prasanna, and A. Rathore: Magnetizing-inductance-assisted extended range soft-switching three-phase AC-link current-fed dc/dc converter for low DC voltage applications. IEEE Trans. Power Electron. 28, 3317 (2013).

    Article  Google Scholar 

  28. M. Kheraluwala, R. Gascoigne, D. Divan, and E. Baumann: Performance characterization of a high-power dual active bridge DC-to-DC converter. IEEE Trans. Ind. Appl. 28, 1294 (1992).

    Article  Google Scholar 

  29. R. Beddingfield, P. Vora, D. Storelli, and S. Bhattacharya: Trapezoidal characterization of magnetic materials with a novel dual voltage test circuit. In 2017 IEEE Energy Conversion Congress and Exposition (ECCE) (IEEE, Cincinnati, Ohio, 2017); p. 439.

    Chapter  Google Scholar 

  30. C.P. Steinmetz: On the law of hysteresis. Trans. Am. Inst. Electr. Eng. 9, 1–64 (1892).

    Article  Google Scholar 

  31. G. Herzer: Nanocrystalline soft magnetic alloys. In Handbook of Magnetic Materials, Vol. 10, K.H.J. Buschow, ed. (Elsevier Science, Amsterdam, 1997); ch. 3, p. 415.

    Google Scholar 

  32. M.E. McHenry and D.E. Laughlin: Magnetic properties of metals and alloys. In Physical Metallurgy, 5th ed. (Elsevier Academic Press, Waltham, Massachusetts, 2014); ch. 19, pp. 1881–2008.

    Chapter  Google Scholar 

  33. G. Bertotti: General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24, 621 (1988).

    Article  Google Scholar 

  34. S.J. Kernion, M.J. Lucas, J. Horwath, Z. Turgut, E. Michel, V. Keylin, J. Huth, A.M. Leary, S. Shen, and M.E. McHenry: Metal amorphous nanocomposite (MANC) alloy cores with spatially tuned perme-ability for advanced power magnetics applications. J. Appl. Phys. 113, 17A306 (2013).

    Article  Google Scholar 

  35. “Incomplete Beta Functions” Internet: Available at: https://dlmf.nist.gov/8.17 (accessed April 23, 2019).

  36. K. Byerly, P.R. Ohodnicki, S.R. Moon, A.M. Leary, V. Keylin, M.E. McHenry, S. Simizu, R. Beddingfield, Y. Yu, G. Feichter, R. Noebe, R. Bowman, and S. Bhattacharya: Metal amorphous nanocomposite (MANC) alloy cores with spatially tuned permeability for advanced power magnetics applications. JOM 70, 879 (2018).

    Article  CAS  Google Scholar 

  37. V.J. Thottuvelil, T.G. Wilson, and H.A. Owen, Jr.: High-frequency measurement techniques for magnetic cores. IEEE Trans. Power Electron. 5, 41 (1990).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Oak Ridge Institute for Science Education (ORISE) for funding and financial support. Similarly, the authors would like to thank the Department of Energy for support to the diverse team through DOE EERE initiative SuNLaMP program and the National Energy Technology Lab ongoing research under the RES contract DE-FE0004000. The authors also acknowledge funding support through the National Energy Technology Laboratory’s research support of the DOE OE Transformer Reliability and Advanced Components (TRAC) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Beddingfield.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Appendix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beddingfield, R., Bhattacharya, S., Byerly, K. et al. Thermal profile shaping and loss impacts of strain annealing on magnetic ribbon cores. Journal of Materials Research 33, 2189–2206 (2018). https://doi.org/10.1557/jmr.2018.157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.157

Navigation