Skip to main content
Log in

Paramagnetic defects in hydrothermally grown few-layered MoS2 nanocrystals

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the recent past, two-dimensional (2D) nanocrystalline (NC) transition metal dichalcogenides such as MoS2 received a great deal of attention due to their extraordinary physical properties. There has been a great interest to study the defects present in MoS2 NCs, which alter the material’s catalytic, electrical, and magnetic properties. This work reports paramagnetic point defects present in the hydrothermally grown 2H-MoS2 NCs. X-band electron spin resonance (ESR) spectroscopy has been used to identify the defects which contain unpaired electron spins in the as-prepared and Ar-annealed MoS2 NCs. At least seven ESR signals were detected originating from four inequivalent paramagnetic defect sites such as adsorbed oxygen species, sulfur vacancies, thio-, and oxo-Mo5+. Upon Ar-annealing, most of these defects did not survive, instead conduction ESR signal was observed. This work signifies the importance of employing ESR spectroscopy and broadens the knowledge in identifying the atomic defects in MoS2 NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. J. Kibsgaard, Z. Chen, B.N. Reinecke, and T.F. Jaramillo: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963 (2012).

    Article  CAS  Google Scholar 

  2. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, and I. Chorkendorff: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100 (2007).

    Article  CAS  Google Scholar 

  3. Y. Yu, S-Y. Huang, Y. Li, S.N. Steinmann, W. Yang, and L. Cao: Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553 (2014).

    Article  CAS  Google Scholar 

  4. B. Hinnemann, P.G. Moses, J.L. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, and J.K. Nørskov: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308 (2005).

    Article  CAS  Google Scholar 

  5. H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J.K. Nørskov, and Y. Cui: Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 8, 566 (2015).

    Article  CAS  Google Scholar 

  6. G. Liu, A.W. Robertson, M.M-J. Li, W.C.H. Kuo, M.T. Darby, M.H. Muhieddine, Y-C. Lin, K. Suenaga, M. Stamatakis, J.H. Warner, and S.C.E. Tsang: MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810 (2017).

    Article  CAS  Google Scholar 

  7. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, and J. Shan: Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207 (2013).

    Article  CAS  Google Scholar 

  8. J. Feng, X. Qian, C-W. Huang, and J. Li: Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 6, 866 (2012).

    Article  CAS  Google Scholar 

  9. J.P. Wilcoxon, P.P. Newcomer, and G.A. Samaraa: Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime. J. Appl. Phys. 81, 7934 (1997).

    Article  CAS  Google Scholar 

  10. J.W. Park, H. Seob So, S. Kim, S-H. Choi, H. Lee, J. Lee, C. Lee, and Y. Kim: Optical properties of large-area ultrathin MoS2 films: Evolution from a single layer to multilayers. J. Appl. Phys. 116, 183509 (2014).

    Article  CAS  Google Scholar 

  11. R. Addou, S. McDonnell, D. Barrera, Z. Guo, A. Azcatl, J. Wang, H. Zhu, C.L. Hinkle, M. Q-Lopez, H.N. Alshareef, L. Colombo, J.W.P. Hsu, and R.M. Wallace: Impurities and Electronic Property Variations of Natural MoS2 Crystal Surfaces. ACS Nano 9, 9124 (2015).

    Article  CAS  Google Scholar 

  12. C. Tsai, F.A. Pedersen, and J.K. Nørskov: Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 1381–1387 (2014).

    Article  CAS  Google Scholar 

  13. G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson, A. Zafar, R. Kumar, S. Curtarolo, F. Hunte, S. Shannon, Y. Zhu, W. Yang, and L. Cao: All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 138, 16632 (2016).

    Article  CAS  Google Scholar 

  14. Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song, and S. Jin: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 79657 (2016).

    Google Scholar 

  15. D. Gao, M. Si, J. Li, J. Zhang, Z. Zhang, Z. Yang, and D. Xue: Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Res. Lett. 8, 129 (2013).

    Article  CAS  Google Scholar 

  16. R. Zhang, Y. Li, J. Qi, and D. Gao: Ferromagnetism in ultrathin MoS2 nanosheets: From amorphous to crystalline. Nanoscale Res. Lett. 9, 586 (2014).

    Article  CAS  Google Scholar 

  17. L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, and S. Wei: Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 137, 2622 (2015).

    Article  CAS  Google Scholar 

  18. S-C. Lu and J-P. Leburton: Electronic structures of defects and magnetic impurities in MoS2 monolayers. Nanoscale Res. Lett. 9, 676 (2014).

    Article  CAS  Google Scholar 

  19. A. Azizi, Y. Wang, Z. Lin, K. Wang, A.L. Elias, M. Terrones, V.H. Crespi, and N. Alem: Spontaneous formation of atomically thin stripes in transition metal dichalcogenide monolayers. Nano Lett. 16, 6982 (2016).

    Article  CAS  Google Scholar 

  20. A. Azizi, S. Eichfeld, G. Geschwind, K. Zhang, B. Jiang, D. Mukherjee, L. Hossain, A.F. Piasecki, B. Kabius, J.A. Robinson, and N. Alem: Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. ACS Nano 9, 4882 (2015).

    Article  CAS  Google Scholar 

  21. J. Hong, C. Jin, J. Yuan, and Z. Zhang: Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 29, 1606434 (2017).

    Article  CAS  Google Scholar 

  22. S.S. Rao, A. Stesmans, J.V. Novyen, P. Jacobs, and B. Sels: ESR investigations of ultra-small double walled carbon nanotubes embedded in zeolite nanochannels. J. Phys.: Condens. Matter 23, 455801 (2011).

    CAS  Google Scholar 

  23. S.S. Rao, A. Stesmans, K. Keunen, D.V. Kosynkin, A. Higginbotham, and J.M. Tour: Unzipped graphene nanoribbons as ‘sensitive O2 sensors’—Electron spin resonance probing and dissociation kinetics. Appl. Phys. Lett. 98, 083116 (2011).

    Article  CAS  Google Scholar 

  24. S.S. Rao, A. Stesmans, J. van Tol, D.V. Kosynkin, and J.M. Tour: Magnetic defects in chemically converted graphene nanoribbons: Electron spin resonance investigation. AIP Adv. 4, 047104 (2014).

    Article  CAS  Google Scholar 

  25. S.S. Rao, A. Stesmans, J. van Tol, D.V. Kosynkin, A. Higginbotham-Duque, W. Lu, A. Sinitskii, and J.M. Tour: Spin dynamics and relaxation in graphene nanoribbons: Electron spin resonance probing. ACS Nano 6, 7615 (2012).

    Article  CAS  Google Scholar 

  26. S.S. Rao, S. Narayana Jammalamadaka, A. Stesmans, V.V. Moshchalkov, J. van Tol, D.V. Kosynkin, A. Higginbotham, and J.M. Tour: Ferromagnetism in graphene nanoribbons: Split versus oxidative unzipped ribbons. Nano Lett. 12, 1210 (2012).

    Article  CAS  Google Scholar 

  27. S.R. Singamaneni, J. van Tol, R. Ye, and J.M. Tour: Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots. Appl. Phys. Lett. 107, 212402 (2015).

    Article  CAS  Google Scholar 

  28. A.M. Panich, A.I. Shames, R. Rosentsveig, and R. Tenne: A magnetic resonance study of MoS2 fullerene-like nanoparticles. J. Phys.: Condens. Matter, 21, 395301 (2009).

    CAS  Google Scholar 

  29. A. Stesmans, S. Iacovo, D. Chiappe, I. Radu, C. Huyghebaert, S. De Gendt, and V.V. Afanas’ev: Paramagnetic intrinsic defects in polycrystalline large-area 2D MoS2 films grown on SiO2 by Mo sulfurization. Nanoscale Res. Lett. 12, 283 (2017).

    Article  CAS  Google Scholar 

  30. D. Arcon, A. Zorko, P. Cevc, A. Mrzel, M. Remškar, R. Dominko, M. Gaberšček, and D. Mihailovic: Electron spin resonance of doped chalcogenide nanotubes. Phys. Rev. B 67, 125423 (2003).

    Article  CAS  Google Scholar 

  31. K.C. Khulber, S. Mann, and M. Ternan: Electron spin resonance studies of the surface chemistry of molybdenum-alumina catalysts. Can. J. Chem. 56, 1769 (1978).

    Article  Google Scholar 

  32. B.G. Silbernagel, T.A. Pecoraro, and R.R. Chianelli: Electron spin resonance of supported and unsupported molybdenum hydrotreating catalysts. J. Catal. 78, 380 (1982).

    Article  CAS  Google Scholar 

  33. Y. Bensimon, P. Belougne, J.C. Giuntini, and J.V. Zanchetta: Electron spin resonance of water adsorption on amorphous molybdenum sulfide. J. Phys. Chem. 88, 2754 (1984).

    Article  CAS  Google Scholar 

  34. B. Deroide, Y. Bensimon, P. Belougne, and J.V. Zanchetta: Lineshapes of ESR signals and the nature of paramagnetic species in amorphous molybdenum sulfides. J. Phys. Chem. Solids 52, 853 (1991); J. Non-Cryst Solids 149, 218 (1992).

    Article  CAS  Google Scholar 

  35. C. Louis and M. Che: EPR investigation of the coordination sphere of Mo5+ ions on thermally reduced silica-supported molybdenum catalysts prepared by the grafting method. J. Phys. Chem. 91, 2875 (1987).

    Article  CAS  Google Scholar 

  36. W. Gu, Y. Yan, C. Zhang, C. Ding, and Y. Xian: One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection, ACS Appl. Mater. Interfaces, 8, 11272–11279 (2016).

    Article  CAS  Google Scholar 

  37. X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, and G. Ji, A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance, J. Mater. Chem. C 4, 6816–6821 (2016).

    Article  CAS  Google Scholar 

  38. S.S. Rao, K.N. Anuradha, S. Sarangi, and S.V. Bhat: Weakening of charge order and anti ferromagnetic to ferromagnetic switch over in Pr0.5Ca0.5MnO3 nanowires. Appl. Phys. Lett. 87, 182503 (2005).

    Article  CAS  Google Scholar 

  39. K.N. Anuradha, S.S. Rao, and S.V. Bhat: Complete melting of charge order in hydrothermally grown Pr0.57Ca0.41 Ba0.02MnO3 nanowires. J. Nanosci. Nanotechnol. 7, 1775 (2007).

    Article  CAS  Google Scholar 

  40. K. Ojha, S. Saha, S. Banerjee, and A.K. Ganguli: Efficient electrocatalytic hydrogen evolution from MoS2-functionalized Mo2N nanostructures. ACS Appl. Mater. Interfaces 9, 19455 (2017).

    Article  CAS  Google Scholar 

  41. P.A. Spevack and N.S. Mclntyre: A Raman and XPS investigation of supported molybdenum oxide thin films. 2. Reactions with hydrogen sulfide. J. Phys. Chem. 97, 11031 (1993).

    Article  CAS  Google Scholar 

  42. W. Zhang, T. Zhou, J. Zheng, J. Hong, Y. Pan, and R. Xu: Water-soluble MoS3 nanoparticles for photocatalytic H2 evolution. ChemSusChem 8, 1464 (2015).

    Article  CAS  Google Scholar 

  43. P.A. Spevack and N.S. Mclntyre: A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies. J. Phys. Chem. 97, 11020 (1993).

    Article  CAS  Google Scholar 

  44. D. Chiappe, I. Asselberghs, S. Sutar, S. Iacovo, V. Afanas’ev, A. Stesmans, Y. Balaji, L. Peters, M. Heyne, M. Mannarino, W. Vandervorst, S. Sayan, C. Huyghebaert, M. Caymax, M. Heyns, S. De Gendt, I. Radu, and A. Thean: Controlled sulfurization process for the synthesis of large area MoS2 films and MoS2/WS2 heterostructures. Adv. Mater. Interfaces 3, 1500635 (2016).

    Article  CAS  Google Scholar 

  45. J.W.C. Spackman: Electron spin resonance of charge carriers in impure molybdenum disulphide. Nature 198, 1266 (1963).

    Article  CAS  Google Scholar 

  46. F.D. Brand, G.M. Ribeiro, P.H. Vaz, J.C. González, and K. Krambrock: Identification of rhenium donors and sulfur vacancy acceptors in layered MoS2 bulk samples. J. Appl. Phys. 119, 235701 (2016).

    Article  CAS  Google Scholar 

  47. A. Stesmans, S. Iacovo, and V.V. Afanas’ev: ESR study of p-type natural 2H-polytype MoS2 crystals: The as acceptor activity. Appl. Phys. Lett. 109, 172104 (2016).

    Article  CAS  Google Scholar 

  48. A.J.A. Konings, A.M. van Doormen, D.C. Koningsberger, V.H.J. De Beer, A.L. Farragher, and G.C.A. Schuit: ESR studies on hydrodesulfurization catalysts: Supported and unsupported sulfided molybdenum and tungsten catalysts. J. Catal. 54, 1 (1978).

    Article  CAS  Google Scholar 

  49. K.C. Khulbe, R.S. Mann, and M. Ternan: Electron spin resonance of the surface chemistry of molybdenum-alumina catalysts, CAN. J. Chem. 56, 1769 (1978).

    CAS  Google Scholar 

  50. A. Sobczynski and W. Zmierczak: Characterization of MoS2/SiO2 by ESR and no absorption. React. Kinet. Catal. Lett. 44, 511 (1991).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

L.M.M and S.R.S acknowledge support from a UTEP start-up grant. L.M.M acknowledges the Wiemer Family for awarding Student Endowment for Excellence. S.R.S acknowledges the NSF-PREM program (DMR-1205302). The authors sincerely thank Prof. Russell Chianelli for shared synthesis facilities and for useful discussion. KMR acknowledges the NSF-MRI grant DMR-0722699. C.K. acknowledges the Boise State Center for Materials Characterization (BSCMC) and NSF MRI Grant DMR-0521315. The authors thank S.R.J. Hennadige and E. Castro for their help in performing ESR and Raman spectroscopy measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Rao Singamaneni.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, L.M., Karthik, C., Kongara, M. et al. Paramagnetic defects in hydrothermally grown few-layered MoS2 nanocrystals. Journal of Materials Research 33, 1565–1572 (2018). https://doi.org/10.1557/jmr.2018.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.149

Navigation