Skip to main content
Log in

Electronic, microstructure, and magnetic performances in MoS2-nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electronic and structural properties are studied at room temperature, whereas the magnetic performances of MoS2-nanoparticles (MoS2-NPs) are studied from room temperature (300 K) down to 5 K within the range of the magnetic field − 10 T to + 10 T. We find that MoS2-NPs display diamagnetic in the temperature range 300–50 K, whereas at ≈ 45 K the M–H hysteresis curve shows the presence of both diamagnetic and ferromagnetic behaviours. The existence of ferromagnetism is significantly enhanced from 40 K down to 5 K, presumably due to Mo-atom, S-vacancies/O-vacancies, defective structure due to the higher density of dangling bonds, and small MoS2-NPs sizes. Different ferromagnetic parameters viz. saturation magnetization, retentivity, and coercivity of MoS2-NP at ≈ 5 K are 55 m emu/g, 45 m emu/g, and 4500 Oe respectively are obtained from the M–H hysteresis curve. The electronic, microstructures and defects are also studied using XPS/UPS and Raman spectrum that correlated/consistence with the magnetic performances of MoS2-NPs. This low temperature (≤ 40 K) ferromagnetism in MoS2-NPs could be useful for low temperature promising potential technological magnetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa et al., Nano Lett. 13, 6222 (2013)

    Article  ADS  Google Scholar 

  2. É. Blanco, P. Afanasiev, G. Berhault, D. Uzio, S. Loridant, C. R. Chim. 19, 1310 (2016)

    Article  Google Scholar 

  3. H. Li, J. Wu, Z. Yin, H. Zhang, Acc. Chem. Res. 47, 1067 (2014)

    Article  Google Scholar 

  4. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, L. Cao, Sci. Rep. 3, 1866 (2013)

    Article  ADS  Google Scholar 

  5. L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan et al., J. Am. Chem. Soc. 137, 2622 (2015)

    Article  Google Scholar 

  6. H. Zhai, J. Qi, Y. Tan, L. Yang, H.-J. Li, Y. Kang et al., Appl. Mater. Today 18, 100536 (2020)

    Article  Google Scholar 

  7. M.M. Sajid, H. Zhai, N.A. Shad, M. Shafique, A.M. Afzal, Y. Javed et al., RSC Adv. 11, 13105 (2021)

    Article  ADS  Google Scholar 

  8. L. Yang, X. Cui, J. Zhang, K. Wang, M. Shen, S. Zeng et al., Sci. Rep. 4, 5649 (2014)

    Article  Google Scholar 

  9. G. Gao, C. Chen, X. Xie, Y. Su, S. Kang, G. Zhu et al., Mater. Res. Lett. 5, 267 (2017)

    Article  Google Scholar 

  10. S. Sarma, S.C. Ray, Appl. Surf. Sci. 474, 227 (2019)

    Article  ADS  Google Scholar 

  11. S.C. Ray, J. Mater. Sci. Lett. 19, 803 (2022)

    Article  Google Scholar 

  12. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010)

    Article  Google Scholar 

  13. S. Tongay, S.S. Varnoosfaderani, B.R. Appleton, J.G. Wu, A.F. Hebard, Appl. Phys. Lett. 101, 123105 (2012)

    Article  ADS  Google Scholar 

  14. C. Ataca, S. Ciraci, J. Phys. Chem. C 115, 13303 (2011)

    Article  Google Scholar 

  15. D. Gao, M. Si, J. Li, J. Zhang, Z. Zhang, Z. Yang et al., Nanoscale Res Lett. 8, 129 (2013)

    Article  ADS  Google Scholar 

  16. L. Kou, C. Tang, Y. Zhang, T. Heine, C.F. Chen, T. Frauenheim, J. Phys. Chem. Lett. 3, 2934 (2012)

    Article  Google Scholar 

  17. Q.W. Zhou, S.Q. Su, P.F. Cheng, X.B. Hu, M. Zeng, X.S. Gao et al., Nanoscale 10, 11578 (2018)

    Article  Google Scholar 

  18. S. Sarma, S.C. Ray, J. Magn. Magn. Mater. 546, 168863 (2022)

    Article  Google Scholar 

  19. S. Sarma, B. Ghosh, S.C. Ray, H.T. Wang, T.S. Mahule, W.F. Pong, J. Phys. Condens. Matter 31, 135501 (2019)

    Article  ADS  Google Scholar 

  20. B. Wang, D. Zhang, H. Wang, H. Zhao, R. Liu, Q. Li et al., AIP Adv. 10, 015243 (2020)

    Article  ADS  Google Scholar 

  21. G. Greczynski, L. Hultman, Prog. Mater Sci. 107, 100591 (2020)

    Article  Google Scholar 

  22. G. Greczynski, L. Hultman, ChemPhysChem 18, 1507 (2017)

    Article  Google Scholar 

  23. G. Greczynski, L. Hultman, Angewandte Chemie Int. Ed. 59, 5002 (2020)

    Article  Google Scholar 

  24. G. Greczynski, L. Hultman, Appl. Surf. Sci. 451, 99 (2018)

    Article  ADS  Google Scholar 

  25. M. Placidi, M. Dimitrievska, V. Izquierdo-Roca, X. Fontané, A. Castellanos-Gomez, A. Pérez-Tomás et al., 2D Mater. 2, 035006 (2015)

    Article  Google Scholar 

  26. B. Li, L. Jiang, X. Li, P. Ran, P. Zuo, A. Wang et al., Sci. Rep. 7, 11182 (2017)

    Article  ADS  Google Scholar 

  27. V.V. Ivanovskaya, A. Zobelli, A. Gloter, N. Brun, V. Serin, C. Colliex, Phys. Rev. B 78, 134104 (2008)

    Article  ADS  Google Scholar 

  28. X.-J. Lv, G.-W. She, S.-X. Zhou, Y.-M. Li, RSC Adv. 3, 21231 (2013)

    Article  ADS  Google Scholar 

  29. W. Jaegermann, D. Schmeisser, Surf. Sci. 165, 143 (1986)

    Article  ADS  Google Scholar 

  30. Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu, F. Liu et al., ACS Catal. 3, 2101 (2013)

    Article  Google Scholar 

  31. C.M. Smyth, R. Addou, S. McDonnell, C.L. Hinkle, R.M. Wallace, J. Phys. Chem. C 120, 14719 (2016)

    Article  Google Scholar 

  32. L. Wang, Y. Xu, X. Tan, S. Tapas, J. Zhang, RSC Adv. 7, 36201 (2017)

    Article  ADS  Google Scholar 

  33. W.S. Yun, J.D. Lee, J. Phys. Chem. C. 119, 2822 (2015)

    Article  Google Scholar 

  34. A.M. Panich, A.I. Shames, R. Rosentsveig, R. Tenne, J. Phys. Condens. Matter 21, 395301 (2009)

    Article  Google Scholar 

  35. Y. Sun, K. Liu, X. Hong, M. Chen, J. Kim, S. Shi et al., Nano Lett. 14, 5329 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.C.R gratefully acknowledges the National Research Foundation (NRF), South Africa under (Grant No. EQP13091742446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sekhar Chandra Ray.

Ethics declarations

Conflict of interest

The author declares no competing financial interests and has no conflict of interest. The author hereby declared that this work is neither published nor submitted in any other journals for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S.C. Electronic, microstructure, and magnetic performances in MoS2-nanoparticles. Appl. Phys. A 128, 834 (2022). https://doi.org/10.1007/s00339-022-05982-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05982-3

Keywords

Navigation