Skip to main content
Log in

Gram scale synthesis of Fe/FexOy core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/FexOy core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of the resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. W.G. Hurley and W.H. Wolfle: Transformers and Inductors for Power Electronics: Theory, Design and Applications, 1st ed. (John Wiley & Sons Ltd., West Sussex, U.K., 2013).

    Google Scholar 

  2. C. Beatrice, S. Dobak, E. Ferrara, F. Fiorillo, C. Ragusa, J. Fuzer, and P. Kollar: Broadband magnetic losses of nanocrystalline ribbons and powder cores. J. Magn. Magn. Mater. 420, 317–323 (2016).

    CAS  Google Scholar 

  3. K. Mandel, F. Hutter, C. Gellermann, and G. Sextl: Modified superparamagnetic nanocomposite microparticles for highly selective Hg(II) or Cu(II) separation and recovery from aqueous solutions. ACS Appl. Mater. Interfaces 4, 5633–5642 (2012).

    CAS  Google Scholar 

  4. W. Dong, Y. Li, D. Niu, Z. Ma, J. Gu, Y. Chen, W. Zhao, X. Liu, C. Liu, and J. Shi: Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 23, 5392–5397 (2011).

    CAS  Google Scholar 

  5. W.L. Gu, X. Deng, X.X. Gu, X.F. Jia, B.H. Lou, X.W. Zhang, J. Li, and E.K. Wang: Stabilized, superparamagnetic functionalized graphene/Fe3O4@Au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application. Anal. Chem. 87, 1876–1881 (2015).

    CAS  Google Scholar 

  6. L.J. Zhu, D.L. Wang, X. Wei, X.Y. Zhu, J.Q. Li, C.L. Tu, Y. Su, J.L. Wu, B.S. Zhu, and D.Y. Yan: Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J. Controlled Release 169, 228–238 (2013).

    CAS  Google Scholar 

  7. B. Cullity: Introduction to Magnetic Materials (Addison-Wesley Pub. Co., Reading, MA, 1972).

    Google Scholar 

  8. D.L. Huber: Synthesis, properties, and applications of iron nanoparticles. Small 1, 482–501 (2005).

    CAS  Google Scholar 

  9. M. Knobel, W.C. Nunes, L.M. Socolovsky, E. De Biasi, J.M. Vargas, and J.C. Denardin: Superparamagnetism and other magnetic features in granular materials: A review on ideal and real systems. J. Nanosci. Nanotechnol. 8, 2836–2857 (2008).

    CAS  Google Scholar 

  10. J. Pyun: Nanocomposite materials from functional polymers and magnetic colloids. Polym. Rev. 47, 231–263 (2007).

    CAS  Google Scholar 

  11. R. Stone, S. Hipp, J. Barden, P.J. Brown, and O.T. Mefford: Highly scalable nanoparticle–polymer composite fiber via wet spinning. J. Appl. Polym. Sci. 130, 1975–1980 (2013).

    CAS  Google Scholar 

  12. H. Wakayama and H. Yonekura: Synthesis and magnetic properties of FePt nanocomposite magnets via self-assembled block copolymer templates. Mater. Lett. 171, 268–272 (2016).

    CAS  Google Scholar 

  13. S. Behrens and I. Appel: Magnetic nanocomposites. Curr. Opin. Biotechnol. 39, 89–96 (2016).

    CAS  Google Scholar 

  14. S. Chen, S. Zhang, T. Jin, and G. Zhao: Synthesis and characterization of novel covalently linked waterborne polyurethane/Fe3O4 nanocomposite films with superior magnetic, conductive properties and high latex storage stability. Chem. Eng. J. 286, 249–258 (2016).

    CAS  Google Scholar 

  15. A.C. de Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat, and R.C. Advincula: High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141–155 (2016).

    Google Scholar 

  16. J.B. Hooper and K.S. Schweizer: Theory of phase separation in polymer nanocomposites. Macromolecules 39, 5133–5142 (2006).

    CAS  Google Scholar 

  17. V.N. Mochalin, I. Neitzel, B.J.M. Etzold, A. Peterson, G. Palmese, and Y. Gogotsi: Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 5, 7494–7502 (2011).

    CAS  Google Scholar 

  18. B.I. Dach, H.R. Rengifo, N.J. Turro, and J.T. Koberstein: Cross-linked “matrix-free” nanocomposites from reactive polymer-silica hybrid nanoparticles. Macromolecules 43, 6549–6552 (2010).

    CAS  Google Scholar 

  19. B.G. Compton and J.A. Lewis: 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930–5935 (2014).

    CAS  Google Scholar 

  20. F.L. Jin, X. Li, and S.J. Park: Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 29, 1–11 (2015).

    CAS  Google Scholar 

  21. Y. Sugawa, K. Ishidate, M. Sonehara, and T. Sato: Carbonyl-iron/epoxy composite magnetic core for planar power inductor used in package-level power grid. IEEE Trans. Magn. 49, 4172–4175 (2013).

    CAS  Google Scholar 

  22. H. Gu, S. Tadakamalla, Y. Huang, H.A. Colorado, Z. Luo, N. Haldolaarachchige, D.P. Young, S. Wei, and Z. Guo: Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites. ACS Appl. Mater. Interfaces 4, 5613–5624 (2012).

    CAS  Google Scholar 

  23. J.H. Zhu, S.Y. Wei, J. Ryu, L.Y. Sun, Z.P. Luo, and Z.H. Guo: Magnetic epoxy resin nanocomposites reinforced with core–shell structured Fe@FeO nanoparticles: Fabrication and property analysis. ACS Appl. Mater. Interfaces 2, 2100–2107 (2010).

    CAS  Google Scholar 

  24. Z.S. Pour and M. Ghaemy: Thermo-mechanical behaviors of epoxy resins reinforced with silane-epoxide functionalized α-Fe2O3 nanoparticles. Prog. Org. Coat. 77, 1316–1324 (2014).

    CAS  Google Scholar 

  25. B.T. Naughton, P. Majewski, and D.R. Clarke: Magnetic properties of nickel–zinc ferrite toroids prepared from nanoparticles. J. Am. Ceram. Soc. 90, 3547–3553 (2007).

    CAS  Google Scholar 

  26. N. Mikuszeit, E.Y. Vedmedenko, and H.P. Oepen: Multipole interaction of polarized single-domain particles. J. Phys. Condens. Matter 16, 9037–9045 (2004).

    CAS  Google Scholar 

  27. G.C. Bleier, J. Watt, C.K. Simocko, J.M. Lavin, and D.L. Huber: Reversible magnetic agglomeration—A mechanism for true thermodynamic control over nanoparticle size. Angew. Chem. Int. Ed. Engl. (2018) DOI: https://doi.org/10.1002/anie.201800959.

  28. B.D. Fellows, S. Sandler, J. Livingston, K. Fuller, L. Nwandu, S. Timmins, K.A. Lantz, M. Stefik, and O.T. Mefford: Extended LaMer synthesis of cobalt-doped ferrite. IEEE Magn. Lett. 9, 1–5 (2018).

    CAS  Google Scholar 

  29. E.C. Vreeland, J. Watt, G.B. Schober, B.G. Hance, M.J. Austin, A.D. Price, B.D. Fellows, T.C. Monson, N.S. Hudak, L. Maldonado-Camargo, A.C. Bohorquez, C. Rinaldi, and D.L. Huber: Enhanced nanoparticle size control by extending LaMer’s mechanism. Chem. Mater. 27, 6059–6066 (2015).

    CAS  Google Scholar 

  30. M. Unni, A.M. Uhl, S. Savliwala, B.H. Savitzky, R. Dhavalikar, N. Garraud, D.P. Arnold, L.F. Kourkoutis, J.S. Andrew, and C. Rinaldi: Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11, 2284–2303 (2017).

    CAS  Google Scholar 

  31. T.C. Monson, Q. Ma, T.E. Stevens, J.M. Lavin, J.L. Leger, P.V. Klimov, and D.L. Huber: Implication of ligand choice on surface properties, crystal structure, and magnetic properties of iron nanoparticles. Part. Part. Syst. Char. 30, 258–265 (2013).

    CAS  Google Scholar 

  32. G. Concas, F. Congiu, G. Muscas, and D. Peddis: Determination of blocking temperature in magnetization and mössbauer time scale: A functional form approach. J. Phys. Chem. C 121, 16541–16548 (2017).

    CAS  Google Scholar 

  33. J. Watt, G.C. Bleier, M.J. Austin, S.A. Ivanov, and D.L. Huber: Non-volatile iron carbonyls as versatile precursors for the synthesis of iron-containing nanoparticles. Nanoscale 9, 6632–6637 (2017).

    CAS  Google Scholar 

  34. H. Yun, J. Kim, T. Paik, L.Y. Meng, P.S. Jo, J.M. Kikkawa, C.R. Kagan, M.G. Allen, and C.B. Murray: Alternate current magnetic property characterization of nonstoichiometric zinc ferrite nanocrystals for inductor fabrication via a solution based process. J. Appl. Phys. 119 (2016).

  35. J. Park, J. Joo, S.G. Kwon, Y. Jang, and T. Hyeon: Synthesis of monodisperse spherical nanocrystals. Angew. Chem., Int. Ed. Engl. 46, 4630–4660 (2007).

    CAS  Google Scholar 

  36. S. Schonecker, X. Li, B. Johansson, S.K. Kwon, and L. Vitos: Thermal surface free energy and stress of iron. Sci. Rep. 5, 14860 (2015).

    Google Scholar 

  37. G. Grochola, S.P. Russo, I. Yarovsky, and I.K. Snook: “Exact” surface free energies of iron surfaces using a modified embedded atom method potential and lambda integration. J. Chem. Phys. 120, 3425–3430 (2004).

    CAS  Google Scholar 

  38. G.K. Tripp, K.L. Good, M.J. Motta, P.H. Kass, and C.J. Murphy: The effect of needle gauge, needle type, and needle orientation on the volume of a drop. Vet. Ophthalmol. 19, 38–42 (2016).

    Google Scholar 

  39. T. Li, A.J. Senesi, and B. Lee: Small angle X-ray scattering for nanoparticle research. Chem. Rev. 116, 11128–11180 (2016).

    CAS  Google Scholar 

  40. Y. Xu, Y. Qin, S. Palchoudhury, and Y. Bao: Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27, 8990–8997 (2011).

    CAS  Google Scholar 

  41. H. Nakamura and Z. Tamura: Fluorometric determination of secondary amines based on their reaction with fluorescamine. Anal. Chem. 52, 2087–2092 (1980).

    CAS  Google Scholar 

  42. D. Eastwood, C. Fernandez, B.Y. Yoon, C.N. Sheaff, and C.M. Wai: Fluorescence of aromatic amines and their fluorescamine derivatives for detection of explosive vapors. Appl. Spectrosc. 60, 958–963 (2006).

    CAS  Google Scholar 

  43. M.G. Gore: Spectrophotometry and Spectrofluorimetry: A Practical Approach, 2nd ed. (Oxford University Press, New York, NY, 2000).

    Google Scholar 

  44. J. Puig, C.E. Hoppe, L.A. Fasce, C.J. Perez, Y. Pineiro-Redondo, M. Banobre-Lopez, M.A. Lopez-Quintela, J. Rivas, and R.J.J. Williams: Superparamagnetic nanocomposites based on the dispersion of oleic acid-stabilized magnetite nanoparticles in a diglycidylether of bisphenol a-based epoxy matrix: Magnetic hyperthermia and shape memory. J. Phys. Chem. C 116, 13421–13428 (2012).

    CAS  Google Scholar 

  45. M. Kessler: Advanced Topics in Characterization of Composites, 1st ed. (Trafford Publishing, Bloomington, IN, 2004).

    Google Scholar 

  46. X. Gao, J. Shen, Y. Hsia, and Y. Chen: Reduction of supported iron oxide studied by temperature-programmed reduction combined with mossbauer spectroscopy and X-ray diffraction. J. Chem. Soc., Faraday Trans. 89, 1079–1084 (1993).

    CAS  Google Scholar 

  47. C. Bolm, J. Legros, J. Le Paih, and L. Zani: Iron-catalyzed reactions in organic synthesis. Chem. Rev. 104, 6217–6254 (2004).

    CAS  Google Scholar 

  48. M. Kin, H. Kura, and T. Ogawa: Core loss and magnetic susceptibility of superparamagnetic Fe nanoparticle assembly. AIP Adv. 6, 125013 (2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Watt.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watt, J., Bleier, G.C., Romero, Z.W. et al. Gram scale synthesis of Fe/FexOy core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites. Journal of Materials Research 33, 2156–2167 (2018). https://doi.org/10.1557/jmr.2018.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.139

Navigation