Skip to main content
Log in

Effect of ECAP temperature on precipitation and strengthening mechanisms of Mg–9Al–1Si alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of equal-channel angular pressing (ECAP) at various temperatures (310, 330, and 350 °C) on precipitations and strengthening mechanisms of Mg–9Al–1Si alloys was investigated. The results indicated that the average grain size decreased gradually with decreasing of ECAP temperature. The distribution of the Mg2Si phase changed a little when the ECAP temperature increased. However, the different morphologies of β-Mg17Al12 phase were observed, including continuous and uncontinuous precipitation of particles at 310 and 350 °C. The continuous β-Mg17Al12 phase was hardly found and the refined β-Mg17Al12 phase was distributed dispersedly in the matrix at 330 °C. Thus, the mechanical properties of the Mg–9Al–1Si alloy was optimum: ultimate tensile strength and elongation were ∼350.8 MPa and ∼14.77%, respectively. It can be deduced that both grain refinement strengthening and precipitation strengthening play significant roles in strength increment of the alloy during the ECAP process. However, precipitation strengthening is the predominant mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. P. Poddar, S. Bagui, K. Ashok, and A.P. Murugesanl: Experimental investigation on microstructure and mechanical properties of gravity-die-cast, magnesium alloys. J. Alloys Compd. 695, 895 (2016).

    Article  Google Scholar 

  2. T. Krajňák, P. Minárik, and J. Stráská: Influence of equal channel angular pressing temperature on texture, microstructure and mechanical properties of extruded AX41 magnesium. J. Alloys Compd. 705, 273 (2017).

    Article  Google Scholar 

  3. J.W. Kang, X.F. Sun, K.K. Deng, F.J. Xu, X. Zhang, and Y. Bai: High strength Mg–9Al serial alloy processed by slow extrusion. Mat. Sci. Eng., A, 697, 211 (2017).

    Article  CAS  Google Scholar 

  4. J.M. Hu, J. Teng, X.K. Ji, D.F. Fu, W.G. Zhang, and H. Zhang: Enhanced mechanical properties of an Al–Mg–Si alloy by repetitive continuous extrusion forming process and subsequent aging treatment. Mat. Sci. Eng., A 695, 35 (2017).

    Article  CAS  Google Scholar 

  5. A. Vinogradov: Effect of severe plastic deformation on tensile and fatigue properties of fine-grained magnesium alloy ZK60. J. Mater. Res. 32, 1 (2017).

    Article  Google Scholar 

  6. P.C. Yadav, S. Sahu, A. Subramaniam, and S. Shekhar: Effect of heat-treatment on microstructural evolution and mechanical behaviour of severely deformed Inconel 718. Mat. Sci. Eng., A. 715, 295 (2018).

    Article  CAS  Google Scholar 

  7. M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, and S.H. Seyyedein: Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. Prog. Nat. Sci.: Mater. 26, 182 (2016).

    Article  CAS  Google Scholar 

  8. W.H. Wang, H.X. Wang, Y.M. Liu, H.H. Nie, and W.L. Cheng: Effect of SiC nanoparticles addition on the microstructures and mechanical properties of ECAPed Mg9Al–1Si alloy. J. Mater. Res. 32, 615 (2017).

    Article  CAS  Google Scholar 

  9. M.A. Afifi, P.H.R. Pereira, Y.C. Wang, Y.W. Wang, S.K. Li, and T.G. Langdon: Effect of ECAP processing on microstructure evolution and dynamic compressive behavior at different temperatures in an Al–Zn–Mg alloy. Mat. Sci. Eng., A (2016).

    Google Scholar 

  10. J. Zhang, G.Q. Xi, X. Wan, and C. Fang: The dislocation-twin interaction and evolution of twin boundary in AZ31 Mg alloy. Acta Mater. 133, 208 (2017).

    Article  CAS  Google Scholar 

  11. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang: What is going on in magnesium alloys?J. Mater. Sci. Technol. 34, 245 (2017).

    Article  CAS  Google Scholar 

  12. S.Q. Zhu and S.P. Ringer: On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys. Acta Mater. 144, 365 (2018).

    Article  CAS  Google Scholar 

  13. T. Krajňák, P. Minárik, J. Stráská, K. Máthis, R. Kužel, and M. Janeček: Influence of equal channel angular pressing temperature on texture, microstructure and mechanical properties of extruded AX41 magnesium. J. Alloys Compd. 705, 273 (2017).

    Article  Google Scholar 

  14. M. Hong, S.S.A. Shah, D. Wu, R.S. Chen, X.H. Du, N.T. Hu, and Y.F. Zhang: Ultra-high strength Mg–9Gd–4Y–0.5Zr alloy with bi-modal structure processed by traditional extrusion. Met. Mater. Int. 22, 1091 (2016).

    Article  CAS  Google Scholar 

  15. L.L. Tang, Y.H. Zhao, R.K. Islamgaliev, C.Y.A. Tsao, R.Z. Valiev, E.J. Lavernia, and Y.T. Zhu: Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP. Mat. Sci. Eng., A 670, 280 (2016).

    Article  CAS  Google Scholar 

  16. H. Liu, J. Ju, J. Bai, J.P. Sun, D. Song, J.L. Yan, J.H. Jiang, and A. Ma: Preparation, microstructure evolutions, and mechanical property of an ultra-fine grained Mg–10Gd–4Y–1.5Zn–0.5Zr alloy. Metals 7, 398 (2017).

    Article  Google Scholar 

  17. W.L. Cheng, L. Tian, H.X. Wang, L.P. Bian, and H. Yu: Improved tensile properties of an equal channel angular pressed (ECAPed) Mg–8Sn–6Zn–2Al alloy by prior aging treatment. Mat. Sci. Eng., A 687, 148 (2017).

    Article  CAS  Google Scholar 

  18. H.X. Wang, B. Zhou, Y.T. Zhao, K.K. Zhou, W.L. Cheng, and W. Liang: Effect of Si addition on the microstructure and mechanical properties of ECAPed Mg–15Al alloy. Mat. Sci. Eng., A 589, 119 (2014).

    Article  CAS  Google Scholar 

  19. S. Sardar, S.K. Karmakar, and D. Das: Ultrasonic assisted fabrication of magnesium matrix composites: A review. Mater. Today 4, 3280 (2017).

    Google Scholar 

  20. A. Veveçka, M. Cabibbo, and T.G. Langdon: A characterization of microstructure and microhardness on longitudinal planes of an Al–Mg–Si alloy processed by ECAP. Mater. Charact. 84, 126 (2013).

    Article  Google Scholar 

  21. J.L. Gong, W. Liang, H.X. Wang, X.G. Zhao, and L.P. Bian: Microstructure and mechanical properties of Mg–12Al–0.7Si magnesium alloy processed by equal channel angular pressing. Mater. Sci. Forum 42, 1800 (2008).

    Google Scholar 

  22. B.G. Wang, X. Wang, J.X. Zhou, G.F. Zhang, and F. Liu: Effects of solution heat treatment on microstructure and mechanical properties of Mg–3Al–1Si–0.3Mn–x Sr alloy. Mat. Sci. Eng., A 618, 210 (2014).

    Article  CAS  Google Scholar 

  23. T.W. Wong, A. Hadadzadeh, and M.A. Wells: High temperature deformation behavior of extruded AZ31B magnesium alloy. J. Mater. Process. Technol. 251, 360 (2017).

    Article  Google Scholar 

  24. B. Pourbahari, H. Mirzadeh, and M. Emamy: Elucidating the effect of intermetallic compounds on the behavior of Mg–Gd–Al–Zn magnesium alloys at elevated temperatures. J. Mater. Res. (2017).

    Google Scholar 

  25. H. Zhang, T.L. Wang, and W.Y. Liu: Effect of equal channel angular pressing on microstructure and mechanical properties of Mg–Al–Si alloy. Int. J. Plast. 24, 36 (2017).

    Google Scholar 

  26. L. Zhang, Q.D. Wang, W.J. Liao, W. Guo, B. Ye, H.Y. Jiang, and W.J. Ding: Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy. J. Mater. Sci. Technol. 9, 935 (2017).

    Article  Google Scholar 

  27. H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu: Hall–Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 34, 248 (2017).

    Article  Google Scholar 

  28. T. Khelfa, M.A. Rekik, J.A. Muñoz-Bolaños, J.M. Cabrera-Marrero, and M. Khitouni: Microstructure and strengthening mechanisms in an Al–Mg–Si alloy processed by equal channel angular pressing (ECAP). Int. J. Adv. Manuf. Technol. 95, 1165 (2018).

    Article  Google Scholar 

  29. J. Feng, H. Sun, X. Li, H. Wang, and W. Fang: Effects of Ag variations on dynamic recrystallization, texture, and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloys. J. Mater. Res. 31, 3360 (2016).

    Article  CAS  Google Scholar 

  30. Z.J. Zheng, J.W. Liu, and Y. Gao: Achieving high strength and high ductility in 304 stainless steel through bi-modal microstructure prepared by post-ECAP annealing. Mat. Sci. Eng., A 680, 426 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by Natural Science Foundation of Shanxi Province (201701D121045); National Natural Science Foundation of China (51771129, 51301118, and 51404166); and Shanxi Key Laboratory of Advanced Magnesium-based Materials, Taiyuan University of Technology (AMM-2017-12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Wang or Weili Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Wang, H., Nie, H. et al. Effect of ECAP temperature on precipitation and strengthening mechanisms of Mg–9Al–1Si alloys. Journal of Materials Research 33, 1822–1829 (2018). https://doi.org/10.1557/jmr.2018.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.137

Navigation