Skip to main content
Log in

Microstructures and mechanical properties of as-ECAPed Mg–8Sn alloys with the combined addition of Zn and Al

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A “RE-free” and I-phase-containing Mg–8Sn-based alloy system was developed and successfully fabricated through the equal channel angular pressing (ECAP) process. The influence of the Zn/Al mass ratio on the microstructures and mechanical properties of the as-ECAPed Mg–8Sn–(5,6,7)Zn–2(wt%)Al alloys was investigated using an optical microscope, an X-ray diffractometer, a scanning electron microscope, a transmission electron microscope, and a universal testing machine. Grain size, dynamic recrystallization behavior, and texture were found to be greatly affected by the Zn/Al mass ratio. Furthermore, the ultimate tensile strength (250 MPa) and elongation (14.5%) of the alloy with a Zn/Al mass ratio of 3 were considerably increased compared to those of the as-ECAPed alloys with Zn/Al ratios of 2.5 and 3.5 (ultimate tensile strength and elongation of 215 MPa and 13% and 184 MPa and 10%, respectively). This significant enhancement was attributed to extensive grain boundary strengthening, precipitation strengthening, and higher work hardening capacity as well as texture randomization. The strength and ductility of the as-ECAPed alloys are also discussed in terms of the I-phase and Mg2Sn formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. H.Y. Ha, H.J. Kim, S.M. Baek, B. Kim, S.D. Sohn, H.J. Shin, H.Y. Jeong, S.H. Park, C.D. Yim, B.S. You, J.G. Lee, and S.S. Park: Improved corrosion resistance of extruded Mg–8Sn–1Zn–1Al alloy by microalloying with Mn. Scr. Mater. 109, 38–43 (2015).

    Article  CAS  Google Scholar 

  2. T.T. Sasaki, J.D. Ju, K. Hono, and K.S. Shin: Heat-treatable Mg–Sn–Zn wrought alloy. Scr. Mater. 61, 80–83 (2009).

    Article  CAS  Google Scholar 

  3. H.C. Pan, G.W. Qin, M. Xu, H. Fu, Y.P. Ren, F.S. Pan, Z.Y. Gao, C.Y. Zhao, Q.S. Yang, J. She, and B. Song: Enhancing mechanical properties of Mg–Sn alloys by combining addition of Ca and Zn. Mater. Des. 83, 736–744 (2015).

    Article  CAS  Google Scholar 

  4. W.L. Cheng, S.S. Park, B.S. You, and B.H. Koo: Microstructure and mechanical properties of binary Mg–Sn alloys subjected to indirect extrusion. Mater. Sci. Eng., A 527, 4650–4653 (2010).

    Article  CAS  Google Scholar 

  5. M. Roostaei, M.H. Parsa, R. Mahmudi, and H. Mirzadeh: Hot compression behavior of GZ31 magnesium alloy. J. Alloys Compd. 631, 1–6 (2015).

    Article  CAS  Google Scholar 

  6. H. Mirzadeh, M. Roostaei, M.H. Parsa, and R. Mahmudi: Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning. Mater. Des. 68, 228–231 (2015).

    Article  CAS  Google Scholar 

  7. W.Q. Zhang, W.L. Xiao, F. Wang, and C.L. Ma: Development of heat resistant Mg–Zn–Al-based magnesium alloys by addition of La and Ca: Microstructure and tensile properties. J. Alloys Compd. 684, 8–14 (2016).

    Article  CAS  Google Scholar 

  8. M. Suzuki, T. Kimura, J. Koike, and K. Maruyama: Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scr. Mater. 48, 997–1002 (2003).

    Article  CAS  Google Scholar 

  9. C.Y. Zhao, F.S. Pan, S. Zhao, H.C. Pan, K. Song, and A.T. Tang: Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg–Sn implant alloys prepared by sub-rapid solidification. Mater. Sci. Eng., C 54, 245–251 (2015).

    Article  CAS  Google Scholar 

  10. W.L. Cheng, H.S. Kim, B.S. You, B.H. Koo, and S.S. Park: Strength and ductility of novel Mg–8Sn–1Al–1Zn alloys extruded at different speeds. Mater. Lett. 65, 1525–1527 (2011).

    Article  CAS  Google Scholar 

  11. S.H. Park, J.H. Lee, H. Yu, J.H. Yoon, and B.S. You: Effect of cold pre-forging on the microstructure and mechanical properties of extruded Mg–8Sn–1Al–1Zn alloy. Mater. Sci. Eng., A 612, 197–201 (2014).

    Article  CAS  Google Scholar 

  12. Y.K. Kim, S.W. Sohn, D.H. Kim, W.T. Kim, and D.H. Kim: Role of icosahedral phase in enhancing the strength of Mg–Sn–Zn–Al alloy. J. Alloys Compd. 549, 46–50 (2013).

    Article  CAS  Google Scholar 

  13. E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, and M. Vedani: Microstructure, mechanical behavior and low temperature superplasticity of ECAP processed ZM21 Mg alloy. J. Alloys Compd. 638, 267–276 (2015).

    Article  CAS  Google Scholar 

  14. H.X. Wang, K.K. Zhou, G.Y. Xie, X.Z. Liang, W. Liang, and Y.T. Zhao: Microstructure and mechanical properties of an Mg–10Al alloy fabricated by Sb-alloying and ECAP processing. Mater. Sci. Eng., A 560, 787–791 (2013).

    Article  CAS  Google Scholar 

  15. F. Akbaripanah, S.F. Fereshteh, R. Mahmudi, and H.K. Kim: Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing. Mater. Des. 43, 31–39 (2013).

    Article  CAS  Google Scholar 

  16. K. Kim and J. Yoon: Effects of starting microstructure and billet orientations on the texture evolution and the mechanical behavior of Mg–3Al–1Zn rolled plate by half channel angular extrusion (HACE). Mater. Sci. Eng., A 622, 46–51 (2015).

    Article  CAS  Google Scholar 

  17. Y. Wang and H. Choo: Influence of texture on Hall–Petch relationships in an Mg alloy. Acta Mater. 81, 83–97 (2014).

    Article  CAS  Google Scholar 

  18. W. Yuan, S.K. Panigrahi, J.Q. Su, and R.S. Mishra: Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy. Scr. Mater. 65, 994–997 (2011).

    Article  CAS  Google Scholar 

  19. R.L. Xin, X. Zheng, Z. Liu, D.J. Liu, R.S. Qiu, Z.Y. Li, and Q. Liu: Microstructure and texture evolution of an Mg–Gd–Y–Nd–Zr alloy during friction stir processing. J. Alloys Compd. 659, 51–59 (2016).

    Article  CAS  Google Scholar 

  20. C. Chao, J.H. Chen, H.G. Yan, B. Su, M. Song, and S.Q. Zhu: Dynamic precipitation, microstructure and mechanical properties of Mg–5Zn–1Mn alloy sheets prepared by high strain-rate rolling. Mater. Des. 100, 58–66 (2016).

    Article  CAS  Google Scholar 

  21. K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig: Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr. Mater. 63, 725–730 (2010).

    Article  CAS  Google Scholar 

  22. E. Biyiklia, S.M. Tokera, and D. Canadinca: Incorporating the grain boundary misorientation effects on slip activity into crystal plasticity. Mech. Adv. Mater. Struct. 23, 865–872 (2016).

    Article  CAS  Google Scholar 

  23. D. Patrik, C. Frantisek, S.B. Yi, P. Kseniya, L. Dietmar, and B. Jan: Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression. Scr. Mater. 65, 424–427 (2011).

    Article  CAS  Google Scholar 

  24. S.S. Park, Y.J. Kim, W.L. Cheng, Y.M. Kim, and B.S. You: Tensile properties of extruded Mg–8Sn–1Zn alloys subjected to different heat treatments. Philos. Mag. Lett. 91, 37–44 (2011).

    Article  CAS  Google Scholar 

  25. J.G. Jung, S.H. Park, H. Yu, Y.M. Kim, Y.K. Lee, and B.S. You: Improved mechanical properties of Mg–7.6Al–0.4Zn alloy through aging prior to extrusion. Scr. Mater. 93, 8–11 (2014).

    Article  CAS  Google Scholar 

  26. W.N. Tang, S.S. Park, and B.S. You: Effect of the Zn content on the microstructure and mechanical properties of indirect-extruded Mg–5Sn–x Zn alloys. Mater. Des. 32, 3537–3543 (2011).

    Article  CAS  Google Scholar 

  27. T. Takeuchi, S. Murasaki, A. Matsumuro, and U. Mizutani: Formation of quasicrystals and approximant crystals by mechanical alloying in Mg–Al–Zn alloy system. J. Non-Cryst. Solids 156–158, 914–917 (1993).

    Article  Google Scholar 

  28. T. Takeuchi and U. Mizutani: Electronic structure, electron transport properties, and relative stability of icosahedral quasicrystals and their 1/1 and 2/1 approximants in the Al–Mg–Zn alloy system. Phys. Rev. B: Condens. Matter Mater. Phys. 52, 9300–9309 (1995).

    Article  CAS  Google Scholar 

  29. C.Q. Liu, H.W. Chen, and J.F. Nie: Interphase boundary segregation of Zn in Mg–Sn–Zn alloys. Scr. Mater. 123, 5–8 (2016).

    Article  CAS  Google Scholar 

  30. S.J. Shang, K.K. Deng, K.B. Nie, J.C. Li, S.S. Zhou, F.J. Xu, and J.F. Fan: Microstructure and mechanical properties of SiCp/Mg–Al–Zn composites containing Mg17Al12 phases processed by low-speed extrusion. Mater. Sci. Eng., A 610, 243–249 (2014).

    Article  CAS  Google Scholar 

  31. L. Zhang, K.K. Deng, K.B. Nie, F.J. Xu, K. Su, and W. Liang: Microstructures and mechanical properties of Mg–Al–Ca alloys affected by Ca/Al ratio. Mater. Sci. Eng., A 636, 279–288 (2015).

    Article  CAS  Google Scholar 

  32. P. Liu, H.T. Jiang, Z.X. Cai, Q. Kang, and Y. Zhang: The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg–Zn alloys. JMA 4, 188–196 (2016).

    Google Scholar 

  33. H.L. Ding, P. Zhang, G.P. Cheng, and S.H. Kamado: Effect of calcium addition on microstructure and texture modification of Mg rolled sheets. Trans. Nonferrous Met. Soc. 25, 2875–2883 (2015).

    Article  CAS  Google Scholar 

  34. W.Q. Zhang, W.L. Xiao, F. Wang, and C.L. Ma: Development of heat resistant Mg–Zn–Al-based magnesium alloys by addition of La and Ca: Microstructure and tensile properties. J. Alloys Compd. 684, 8–14 (2016).

    Article  CAS  Google Scholar 

  35. J. Bohlen, M.R. Nurnberg, J. Senn, D. Letzig, and S.R. Agnew: The texture and anisotropy of magnesium-zinc-rare earth alloy sheets. Acta Mater. 55, 2101–2112 (2007).

    Article  CAS  Google Scholar 

  36. X.B. Zheng, W.B. Du, K. Liu, Z.H. Wang, and S.B. Li: Effect of trace addition of al on microstructure, texture and tensile ductility of Mg–6Zn–0.5Er alloy. JMA 4, 135–139 (2016).

    Google Scholar 

  37. X.M. Zhang, C.P. Tang, Y.L. Deng, and L. Yang: Effects of thermal treatment on precipitate shape and mechanical properties of Mg–8Gd–4Y–Nd–Zr alloy. Mater. Des. 32, 4994–4998 (2011).

    Article  CAS  Google Scholar 

  38. B. Pourbahari, H. Mirzadeh, and M. Emamy: Toward unraveling the effects of intermetallic compounds on the microstructure and mechanical properties of Mg–Gd–Al–Zn magnesium alloys in the as-cast, homogenized, and extruded conditions. Mater. Sci. Eng., A 680, 39–46 (2017).

    Article  CAS  Google Scholar 

  39. Y. Sun, B. Zhang, Y. Wang, L. Geng, and X. Jiao: Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Mater. Des. 34, 58–64 (2012).

    Article  CAS  Google Scholar 

  40. B.P. Zhang, L. Geng, L.J. Huang, X.X. Zhang, and C.C. Dong: Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scr. Mater. 63, 1024–1027 (2010).

    Article  CAS  Google Scholar 

  41. P. Haasen: Physical Metallurgy, 3rd ed. (Cambridge University Press, Cambridge, 1996).

    Book  Google Scholar 

  42. W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, and B.S. You: Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature. JMA 2, 299–304 (2014).

    CAS  Google Scholar 

  43. T. Gladman: Precipitation hardening in metals. Mater. Sci. Technol. 15, 30–36 (1998).

    Article  Google Scholar 

  44. J.L. Wang, Y.C. Guo, J.P. Li, Y. Zhong, K. Shigeharu, and L.M. Wang: Microstructure, texture and mechanical properties of extruded Mg–5Al–2Nd–0.2Mn alloy. J. Alloys Compd. 635, 100–107 (2015).

    Article  CAS  Google Scholar 

  45. C.J. Bettles and M.A. Gibson: Current wrought magnesium alloys: Strengths and weaknesses. JOM 57, 46–49 (2005).

    Article  CAS  Google Scholar 

  46. Q. Yang, B. Jiang, J. He, B. Song, W. Liu, H. Dong, and F. Pan: Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process. Mater. Sci. Eng., A 612, 187–191 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Natural Science Foundation of China (Grant Nos.: 51404166, 51301118), the Projects of International Cooperation in Shanxi (Grant No.: 2014081002), a Research Project Supported by Shanxi Scholarship Council of China (Grant No.: 2014-023), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant Nos.: 2013108, 2014017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-li Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Wl., Tian, L., Bai, Y. et al. Microstructures and mechanical properties of as-ECAPed Mg–8Sn alloys with the combined addition of Zn and Al. Journal of Materials Research 32, 2315–2324 (2017). https://doi.org/10.1557/jmr.2017.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.128

Navigation