Skip to main content
Log in

Molten-salt fabrication of (N,F)-codoped single-crystal-like titania with high exposure of (001) crystal facet for highly efficient degradation of methylene blue under visible light irradiation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single-crystal-like TiO2 is claimed to be a very promising material among various catalysts. In this study, the (N,F)-co-doped single-crystal-like TiO2 was prepared by a new molten mixing process in which the mixed nitrates were used both as a morphology modifier and an N-doping agent at the same time. The prepared samples also had well-developed (001) facet due to the addition of HF. The HF can also be an F doping agent to the material. The co-doping of N and F can diminish the band gap of TiO2 from 3.05 to 2.93 eV, therefore visible light can be used effectively by the material. In addition, NO and fluorine ions existing on the surface of the sample can also help its photocatalyticity. Therefore, the photocatalytic performance of the as-prepared sample was effectively improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda: Electrochemical photocatalysis of water at semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  2. J.H. Carey, J. Lawrence, and H.M. Tosine: Photodechlorination of PCB’S in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 16, 697 (1976).

    Article  CAS  Google Scholar 

  3. S.N. Frank and A.J. Bard: Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 81, 1484 (1977).

    Article  CAS  Google Scholar 

  4. E. Perez, L. Vittorio, M.F. Torres, E. Sham, and E. Pérez: Nitrogen doped TiO2 photoactive in visible light. Mater.-Rio De Janeiro 20, 561 (2015).

    Google Scholar 

  5. A. Primo and H. Garcia: Solar photocatalysis for environment remediation. New Future Dev. Catal. 6, 145 (2013).

    Google Scholar 

  6. A. Fujishima and X. Zhang: Titanium dioxide photocatalysis: Present situation and future approaches. C. R. Chim. 9, 750 (2006).

    Article  CAS  Google Scholar 

  7. A. Fujishima, T.N. Rao, and D.A. Tryk: Titanium dioxide photocatalysis. J. Photochem. Photobiol. Chem. 1, 1 (2000).

    Article  CAS  Google Scholar 

  8. O.K. Varghese, M. Paulose, T.J. La Tempa, and C.A. Grimes: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731 (2009).

    Article  CAS  Google Scholar 

  9. J. Yu, Y. Wang, and W. Xiao: Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films. J. Mater. Chem. A 1, 10727 (2013).

    Article  CAS  Google Scholar 

  10. J. Yang, X. Zhang, B. Li, H. Liu, P. Sun, C. Wang, L. Wang, and Y. Liu: Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. J. Alloys Compd. 584, 180 (2014).

    Article  CAS  Google Scholar 

  11. B. Qiu, M. Xing, and J. Zhang: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136, 5852 (2014).

    Article  CAS  Google Scholar 

  12. C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, and J. Gole: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049 (2003).

    Article  CAS  Google Scholar 

  13. H.W. Huang, X.W. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, and Y.H. Zhang: Anionic group self-doping as a promising strategy: Band-gap engineering and multi-functional applications of high-performance CO32-doped Bi2O2CO3. ACS Catal. 5, 4094 (2015).

    Article  CAS  Google Scholar 

  14. Z. Mesgari and J. Saien: Pollutant degradation over dye sensitized nitrogen doped titanium substances in different configurations of visible light helical flow photoreactor. Sep. Purif. Technol. 185, 129 (2017).

    Article  CAS  Google Scholar 

  15. Q.J. Xiang, J.G. Yu, and M. Jaroniec: Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets. Chem. Commun. 47, 4532 (2011).

    Article  CAS  Google Scholar 

  16. Z.C. Lai, F. Peng, Y. Wang, H. Wang, H. Yu, P. Liub, and H. Zhao: Low temperature solvothermal synthesis of anatase TiO2 single crystals with wholly {100} and {001} faceted surfaces. J. Mater. Chem. 22, 23906 (2012).

    Article  CAS  Google Scholar 

  17. L. Sun, Z. Zhao, Y. Zhou, and L. Liu: Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 4, 613 (2012).

    Article  CAS  Google Scholar 

  18. J. Zhang, L. Zhang, Y. Shi, G. Xu, E. Zhang, H. Wang, Z. Kong, J. Xi, and Z. Ji: Anatase TiO2 nanosheets with coexposed {101} and {001} facets coupled with ultrathin SnS2 nanosheets as a face-to-face n–p–n dual heterojunction photocatalyst for enhancing photocatalytic activity. Appl. Surf. Sci. 420, 839 (2017).

    Article  CAS  Google Scholar 

  19. Y. Cao, L. Zong, Q. Li, C. Li, J. Li, and J. Yang: Solvothermal synthesis of TiO2 nanocrystals with {001} facets using titanic acid nanobelts for superior photocatalytic activity. Appl. Surf. Sci. 391, 311 (2017).

    Article  CAS  Google Scholar 

  20. D. Li, F. Chen, D. Jiang, W. Shi, and W. Zheng: Enhanced photocatalytic activity of N-doped TiO2 nanocrystals with exposed {001} facets. Appl. Surf. Sci. 390, 689 (2016).

    Article  CAS  Google Scholar 

  21. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).

    Article  CAS  Google Scholar 

  22. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, and G.Q. Lu: Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} faces. J. Am. Chem. Soc. 131, 4078 (2009).

    Article  CAS  Google Scholar 

  23. Y. Alivov and Z.Y. Fan: A method for fabrication of pyramid-shaped TiO2 nanoparticles with a high {001} facet percentage. J. Phys. Chem. C 113, 12954 (2009).

    Article  CAS  Google Scholar 

  24. G. Liu, C.H. Sun, H.G. Yang, S.C. Smith, L. Wang, G.Q. Lu, and H.M. Cheng: Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun. 46, 755 (2010).

    Article  CAS  Google Scholar 

  25. S.W. Liu, G.Y. Yu, and M. Jaroniec: Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatasepolyhedra with exposed {001} facets. J. Am. Chem. Soc. 132, 11914 (2010).

    Article  CAS  Google Scholar 

  26. Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, and G.Z. Cao: ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087 (2009).

    Article  CAS  Google Scholar 

  27. J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, D. Luan, S. Madhavi, F.Y. Boey, L.A. Archer, and X.W. Lou: Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 132, 6124 (2010).

    Article  CAS  Google Scholar 

  28. X. Zheng, Q. Kuang, K. Yan, Y. Qiu, J. Qiu, and S. Yang: Mesoporous TiO2 single crystals: Facile shape-, size-, and phase-controlled growth and efficient photocatalytic performance. ACS Appl. Mater. Interfaces 5, 11249 (2013).

    Article  CAS  Google Scholar 

  29. V. Sivaram, E.J.W. Crossland, T. Leijtens, N.K. Noel, J. Alexander-Webber, P. Docampo, and H.J. Snaith: Observation of annealing-induced doping in TiO2 mesoporous single crystals for use in solid state dye sensitized solar cells. J. Phys. Chem. C 118, 1821 (2014).

    Article  CAS  Google Scholar 

  30. C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu, and Y. Zhou: A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production. ACS Appl. Mater. Interfaces 7, 25716 (2015).

    Article  CAS  Google Scholar 

  31. C.X. Li, Z.Y. Zhao, H.S. Lomboleni, H.W. Huang, and Z.J. Peng: Enhanced visible photocatalytic activity of nitrogen doped single crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2017).

    Article  CAS  Google Scholar 

  32. H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L. Wu, C. Tung, and T. Zhang: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29, 1605148–1605156 (2017).

    Article  CAS  Google Scholar 

  33. Y. Zhao, B. Zhao, J. Liu, G. Chen, R. Gao, S. Yao, M. Li, Q. Zhang, L. Gu, J. Xie, X. Wen, L. Wu, C. Tung, D. Ma, and T. Zhang: Oxide-modified nickel photocatalysts for the production of hydrocarbons in visible light. Angew. Chem. Int. Ed. 55, 4215 (2016).

    Article  CAS  Google Scholar 

  34. Y. Zhao, G. Chen, T. Bian, C. Zhou, G.I.N. Waterhouse, L. Wu, C. Tung, L.J. Smith, D. O’Hare, and T. Zhang: Defect-rich ultrathin znal-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 27, 7824 (2015).

    Article  CAS  Google Scholar 

  35. L. Zheng, X. Yu, M. Long, and Q. Li: Humic acid-mediated visible-light degradation of phenol on phosphate-modified and Nafion-modified TiO2 surfaces. Chin. J. Catal. 38, 2076 (2017).

    Article  CAS  Google Scholar 

  36. H.W. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, and Y.H. Zhang: In situ assembly of BiOI@Bi12O17Cl2 p–n junction: Charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl. Catal. B Environ. 199, 75 (2016).

    Article  CAS  Google Scholar 

  37. H.W. Huang, Y. He, X. Li, M. Li, C. Zeng, F. Dong, X. Du, T. Zhang, and Y.H. Zhang: Bi2O2(OH)(NO3) as a desirable [Bi2O2](2+) layered photocatalyst: Strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. J. Mater. Chem. A 3, 24547 (2015).

    Article  CAS  Google Scholar 

  38. Z. Lyu, B. Liu, R. Wang, and L. Tian: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).

    Article  CAS  Google Scholar 

  39. X. Cheng, X. Yu, Z. Xing, and L. Yang: Enhanced visible light photocatalytic activity of mesoporous anatase TiO2 codoped with nitrogen and chlorine. Int. J. Photoenergy 2012, 1 (2012).

    Google Scholar 

  40. X. Wang, S. Shen, Z. Feng, and C. Li: Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics. Chin. J. Catal. 37, 2059 (2016).

    Article  CAS  Google Scholar 

  41. S.K. Kassahun, Z. Kiflie, D.W. Shin, S.S. Park, W.Y. Jung, and Y.R. Chung: Facile low temperature immobilization of N-doped TiO2 prepared by sol–gel method. J. Sol-Gel Sci. Technol. 83, 698 (2017).

    Article  CAS  Google Scholar 

  42. T.C. Jagadale, S.P. Takale, R.S. Sonawane, H.M. Joshi, S.I. Patil, B.B. Kale, and S.B. Ogale: N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J. Phys. Chem. C 112, 14595 (2008).

    Article  CAS  Google Scholar 

  43. B. Naik, S.Y. Moon, S.H. Kim, and J.Y. Park: Enhanced photocatalytic generation of hydrogen by Pt-deposited nitrogen-doped TiO2 hierarchical nanostructures. Appl. Surf. Sci. 354, 347 (2015).

    Article  CAS  Google Scholar 

  44. M.S. Jyothi, P.D. Souza Laveena, R. Shwetharani, and G.R. Balakrishna: Novel hydrothermal method for effective doping of N and F into nano titania for both, energy and environmental applications. Mater. Res. Bull. 74, 478 (2016).

    Article  CAS  Google Scholar 

  45. H.W. Huang, K. Liu, K. Chen, Y.L. Zhang, Y.H. Zhang, and S.C. Wang: Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C 118, 14379 (2014).

    Article  CAS  Google Scholar 

  46. X.G. Han, Q. Kuang, M.S. Jin, Z. Xie, and L. Zheng: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152 (2009).

    Article  CAS  Google Scholar 

  47. Z.Y. Wang, K.L. Lv, G.H. Wang, K. Deng, and D. Tang: Study on the shape control and photocatalytic activity of high-energy anatase titania. Appl. Catal., B 100, 378 (2011).

    Article  CAS  Google Scholar 

  48. Y. Liu, L. Tian, X. Tan, X. Li, and X. Chen: Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 62, 431 (2017).

    Article  CAS  Google Scholar 

  49. F. Li, T. Han, H. Wang, X. Zheng, J. Wan, and B. Ni: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).

    Article  CAS  Google Scholar 

  50. S. Shet, K. Ahn, T. Deutsch, H.L. Wang, N. Ravindra, Y.F. Yan, J. Turner, and M. Al-Jassim: Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting. J. Mater. Res. 25, 69 (2010).

    Article  CAS  Google Scholar 

  51. J. Prochazka, L. Kavan, M. Zukalova, P. Janda, J. Jirkovsky, Z.V. Zivcova, A. Poruba, M. Bedu, M. Döbbelin, and R. Tena-Zaera: Dense TiO2 films grown by sol–gel dip coating on glass, F-doped SnO2, and silicon substrates. J. Mater. Res. 28, 385 (2013).

    Article  CAS  Google Scholar 

  52. J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).

    Article  CAS  Google Scholar 

  53. K.I. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto: Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2, 207 (2000).

    Article  CAS  Google Scholar 

  54. J. Zhu, S. Wang, Z. Bian, S. Xie, C. Cai, J. Wang, H. Yang, and H. Li: Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity. CrystEngComm 12, 2219 (2010).

    Article  CAS  Google Scholar 

  55. J.G. Yu, G.P. Dai, Q.J. Xiang, and M. Jaroniec: Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. J. Mater. Chem. 21, 1049 (2011).

    Article  CAS  Google Scholar 

  56. H.W. Huang, R.R. Cao, S. Yu, K. Xu, W. Hao, Y. Wang, F. Dong, T. Zhang, and Y.H. Zhang: Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Appl. Catal. B Environ. 219, 526 (2017).

    Article  CAS  Google Scholar 

  57. H.W. Huang, K. Xiao, T. Zhang, F. Dong, and Y.H. Zhang: Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Appl. Catal. B Environ. 203, 879 (2017).

    Article  CAS  Google Scholar 

  58. J. Xie, L. Bian, L. Yao, Y.J. Hao, and Y. Wei: Simple fabrication of mesoporous TiO2 microspheres for photocatalytic degradation of pentachlorophenol. Mater. Lett. 91, 213 (2013).

    Article  CAS  Google Scholar 

  59. H.W. Huang, X. Han, X. Li, S. Wang, P.K. Chu, and Y.H. Zhang: Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOl full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 7, 482 (2015).

    Article  CAS  Google Scholar 

  60. K. Selvam, S. Balachandran, R. Velmurugan, and M. Swaminathan: Mesoporous nitrogen doped nano titania—A green photocatalyst for the effective reductive cleavage of azoxy benzenes to amines or 2-phenyl indazoles in methanol. Appl. Catal., A 413, 213 (2012).

    Article  CAS  Google Scholar 

  61. Y. Yan, T. Chen, Y. Zou, and Y. Wang: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).

    Article  CAS  Google Scholar 

  62. K. Qi, B. Cheng, J. Yu, and W. Ho: A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 38, 1936 (2017).

    Article  CAS  Google Scholar 

  63. C.D. Valentin, E. Finazzi, and G. Pacchioni: Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2. Chem. Mater. 20, 3706 (2008).

    Article  CAS  Google Scholar 

  64. H.W. Huang, K. Xiao, N. Tian, F. Dong, T. Zhang, X. Du, and Y.H. Zhang: Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. J. Mater. Chem. A 5, 17452 (2017).

    Article  CAS  Google Scholar 

  65. F. Wu, X. Li, W. Liu, and S. Zhang: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4–RGO–TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60 (2017).

    Article  CAS  Google Scholar 

  66. X. Li, T. Xia, C. Xu, J. Murowchick, and X. Chen: Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal. Today 225, 64 (2014).

    Article  CAS  Google Scholar 

  67. F. Wu, W. Liu, J. Qiu, J. Li, W. Zhou, Y. Fang, S. Zhang, and X. Li: Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Appl. Surf. Sci. 358, 425 (2015).

    Article  CAS  Google Scholar 

  68. H.W. Huang, Y. He, Z. Lin, L. Kang, and Y.H. Zhang: Two novel Bi-based borate photocatalysts: Crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation. J. Phys. Chem. C 117, 22986 (2013).

    Article  CAS  Google Scholar 

  69. H.W. Huang, S.C. Tu, C. Zeng, T. Zhang, A.H. Reshak, and Y.H. Zhang: Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem., Int. Ed. 56, 11860 (2017).

    Article  CAS  Google Scholar 

  70. L. Tian, J. Xu, A. Alnafisah, R. Wang, X. Tan, N.A. Oyler, L. Liu, and X. Chen: A novel green TiO2 photocatalyst with a surface charge-transfer complex of Ti and hydrazine groups. Chem. Eur. J. 23, 5345 (2017).

    Article  CAS  Google Scholar 

  71. F. Liu, X. Yan, X. Chen, L. Tian, Q. Xia, and X. Chen: Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: Amorphous/crystalline structure and visible-light photocatalytic activity. Catal. Today 264, 243 (2016).

    Article  CAS  Google Scholar 

  72. L. Liu and X. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).

    Article  CAS  Google Scholar 

  73. J.Y. Cheng, J. Chen, W. Lin, Y.D. Liu, and Y. Kong: Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl. Surf. Sci. 332, 573 (2015).

    Article  CAS  Google Scholar 

  74. J.L. Zhang, Y.M. Wu, M.Y. Xing, S.A.K. Leghari, and S. Sajjad: Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 3, 715 (2010).

    Article  CAS  Google Scholar 

  75. X. Li, H.L. Liu, D.L. Luo, J.T. Li, Y. Huang, H.L. Li, Y.P. Fang, Y.H. Xu, and L. Zhu: Adsorption of CO2 on heterostructure CdS (Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J. 180, 151 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project is financially supported by the Fundamental Research Funds for the Central Universities of China No. 2652017150, and the innovative experiment projects of China University of Geosciences (Beijing) Nos. 2017BXY033 and 2017BXY034.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengying Zhao, Hongwei Huang or Zhanhu Guo.

Supplementary Material

43578_2018_33101411_MOESM1_ESM.doc

Supporting information for Molten-salt fabrication of (N, F)-codoped single-crystal-like titania with high exposure of (001) crystal facet for highly efficient degradation of Methylene Blue (MB) under visible light irradiation (approximately 710 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Feng, M., Peng, Z. et al. Molten-salt fabrication of (N,F)-codoped single-crystal-like titania with high exposure of (001) crystal facet for highly efficient degradation of methylene blue under visible light irradiation. Journal of Materials Research 33, 1411–1421 (2018). https://doi.org/10.1557/jmr.2018.106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.106

Navigation