Skip to main content
Log in

Synthesis and characterization of visible-light-active mesoporous titania by doping Ni and N

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ultrafine TiO2 nanoparticles with a narrow size distribution were designed for extending the light absorption wavelength from ultraviolet to visible light with the increased photocatalytic activity. The mesoporous spherical TiO2 nanoparticles and the Ni doped TiO2 nanoparticles were prepared by sol–gel method, with the Ni molar fraction ranged from 0.5, 1, 2, 3, 4 to 5%. Samples were calcined at 550 °C to form crystallized TiO2 and eliminate organic impurities. The Ni and N co-doped TiO2 nanocrystals were prepared by heating Ni doped TiO2 powders in NH3 flow at 650 °C. All the doped titania nanocrystals are well crystallized anatase with a tetragonal structure. 0.5% Ni–TiO2 exhibited optimum photocatalytic activity for MB degradation under UV-light irradiation, which was about twice compared to that of the blank TiO2. The visible light photocatalytic activity of 5% Ni/N-TiO2 was remarkably raised up to 4 times by contrast with the blank TiO2 while the photocatalytic activity of N-TiO2 only increased to 2 times compared to that of the blank TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Electrochemical photocatalysis of water at semiconductor electrode. Nature 238(5358), (1972)

  2. J. Kiwi, M. Graetzel, Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water. J. Am. Chem. Soc. 101(24), 7214–7217 (1979)

    Article  Google Scholar 

  3. K. Domen, S. Naito, T. Onishi et al., Study of the photocatalytic decomposition of water vapor over a NiO-SrTiO2 catalyst. Chem. Inf. 13(50), 98–102 (1982)

    Google Scholar 

  4. T. Kawai, T. Sakata, Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 286(5772), 474–476 (1980)

    Article  Google Scholar 

  5. M. Anpo, Photocatalysis on titanium oxide catalysts: approaches in achieving highly efficient reactions and realizing the use of visible light. Catal. Surv. Asia 1(2), 169–179 (1997)

    Article  Google Scholar 

  6. L. Torkian, E. Amereh, Nano sized Ni/TiO2 @ NaX zeolite with enhanced photocatalytic activity. J. Nanostruct. 6, 307–311 (2016)

    Google Scholar 

  7. J. Zhang, Q. Xu, Z. Feng et al., Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. Engl. 47(9), 1766 (2008)

    Article  Google Scholar 

  8. M. Ni, M.K.H. Leung, D.Y.C. Leung et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007)

    Article  Google Scholar 

  9. Y. Li, D.S. Hwang, N.H. Lee et al., Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem. Phys. Lett. 404(1–3), 25–29 (2005)

    Article  Google Scholar 

  10. R. Beranek, H. Kisch, Tuning the optical and photoelectrochemical properties of surface-modified TiO2. Photochem. Photobiol. Sci. 7(1), 40–48 (2008)

    Article  Google Scholar 

  11. T. Morikawa, R. Asahi, T. Ohwaki et al., Band-gap narrowing of titanium dioxide by nitrogen doping. Jpn. J. Appl. Phys. 40(6A), L561–L563 (2001)

    Article  Google Scholar 

  12. Y. Liang, H. Wang, H.S. Casalongue et al., TiO2, nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3(10), 701–705 (2010)

    Article  Google Scholar 

  13. V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126(15), 4943–4950 (2004)

    Article  Google Scholar 

  14. H. Safajou, H. Khojasteh, M. Salavatiniasari et al., Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J. Colloid Interface Sci. 498, 423–432 (2017)

    Article  Google Scholar 

  15. J. Yu, J. Xiong, B. Cheng et al., Fabrication and characterization of Ag–TiO2, multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B 60(3–4), 211–221 (2005)

    Article  Google Scholar 

  16. E. Kowalska, H. Remita, C. Colbeau-Justin et al., Modification of titanium dioxide with platinum ions and clusters: application in photocatalysis. J. Phys. Chem. C 112(4), 1124–1131 (2008)

    Article  Google Scholar 

  17. J. Reszczyńska, T. Grzyb, J.W. Sobczak et al., Visible light activity of rare earth metal doped (Er3+, Yb3+, or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B 163, 40–49 (2015)

    Article  Google Scholar 

  18. A. Wold, Photocatalytic properties of titanium dioxide (TiO2). Chem. Mater. 5(3), 280–283 (1993)

    Article  Google Scholar 

  19. W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98(51), 13669–13679 (1994)

    Article  Google Scholar 

  20. K.E. Karakitsou, X.E. Verykios, Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. Cheminform 24(19), 1184–1189 (1993)

    Google Scholar 

  21. Y.Y. Chen, Y.B. Xie, J. Yang et al., Double layered, one-pot hydrothermal synthesis of M-TiO2, (M = Fe3+, Ni2+, Cu2+, and Co2+) and their application in photocatalysis. Chin. Sci. 56(12), 1783–1789 (2013)

    Article  Google Scholar 

  22. H. Li, J. Zhou, X. Zhang et al., Constructing stable NiO/N-doped TiO2, nanotubes photocatalyst with enhanced visible-light photocatalytic activity. J. Mater. Sci. 26(4), 2571–2578 (2015)

    Google Scholar 

  23. N.R. Mathews, M.A.C. Jacome, C. Angeles-Chavez et al., Fe doped TiO2, powder synthesized by sol gel method: structural and photocatalytic characterization. J. Mater. Sci. 26(8), 5574–5584 (2015)

    Google Scholar 

  24. S.G. Ansari, F. Tuz-Zehra, H. Fouad et al., Effect of flower extracts on the photoconversion efficiency of dye sensitized solar cells fabricated with Sn-doped TiO2. J. Mater. Sci. 26(7), 5170–5174 (2015)

    Google Scholar 

  25. H. Khojasteh, M. Salavati-Niasari, A. Abbasi et al., Synthesis, characterization and photocatalytic activity of PdO/TiO2, and Pd/TiO2, nanocomposites. J. Mater. Sci. 27(2), 1261–1269 (2016)

    Google Scholar 

  26. F. Miao, W. Zhe, B. Tao et al., Composition dependence of structural, optical, and photoelectrochemical properties of nanocrystalline neodymium-doped titania photocatalyst. Electrochim. Acta 112(12), 32–36 (2013)

    Article  Google Scholar 

  27. S. Masoumi, G. Nabiyouni, D. Ghanbari, Photo-degradation of azo dyes: photo catalyst and magnetic investigation of CuFe2O4–TiO2, nanoparticles and nanocomposites. J. Mater. Sci. 27(9), 1–14 (2016)

    Google Scholar 

  28. S. Mortazavi-Derazkola, M. Salavati-Niasari et al., Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 26(1), 17–23 (2017)

    Article  Google Scholar 

  29. H. Sun, G. Zhou, S. Liu et al., Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants. Chem. Eng. J. 231(9), 18–25 (2013)

    Article  Google Scholar 

  30. T. Sreethawong, Y. Suzuki, S. Yoshikawa, Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol–gel process with surfactant template. Int. J. Hydrog. Energy 30(10), 1053–1062 (2005)

    Article  Google Scholar 

  31. T.S. Yang, M.C. Yang, C.B. Shiu, Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation. Appl. Surf. Sci. 252, 3729–3736 (2006)

    Article  Google Scholar 

  32. J.S. Jang, H.G. Kim, S.M. Ji, S.W. Bae, J.H. Jung, B.H. Shon, Formation of crystalline TiO2−xNx and its photocatalytic activity. J. Solid State Chem. 179, 1067–1075 (2006)

    Article  Google Scholar 

  33. R. Asahi, T. Morikawa, T. Ohwaki et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001)

    Article  Google Scholar 

  34. L. Diamandescu, F. Vasiliu, D. Tarabasanu-Mihaila et al., Structural and photocatalytic properties of iron- and europium-doped TiO2, nanoparticles obtained under hydrothermal conditions. Mater. Chem. Phys. 112(1), 146–153 (2008)

    Article  Google Scholar 

  35. T. Lindgren, J.M. Mwabora, E. Avendaño et al., Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B 107(24), 5709–5716 (2007)

    Article  Google Scholar 

  36. P.G. Wu, C.H. Ma, J.K. Shang, Effects of nitrogen doping on optical properties of TiO2 thin films. Appl. Phys. A 81(7), 1411–1417 (2005)

    Article  Google Scholar 

  37. H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J. Clean. Prod. 148, 31–36 (2017)

    Article  Google Scholar 

  38. T. Ihara, M. Miyoshi, Y. Iriyama et al., Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B 42(4), 403–409 (2003)

    Article  Google Scholar 

  39. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995)

    Article  Google Scholar 

  40. M.J. Robles-Águila, M.E. Mendoza, M.M. Dávila-Jiménez et al., Influence of Ni doping on the structural, optical and textural properties of TiO2, nanocrystals prepared via an ultrasound assisted sol–gel method. J. Sol-Gel. Sci. Technol. 69(3), 571–579 (2014)

    Article  Google Scholar 

  41. Y. Wang, R. Zhang, J. Li et al., First-principles study on transition metal-doped anatase TiO2. Nanoscale Res. Lett. 9(1), 46 (2014)

    Article  Google Scholar 

  42. P. Lorenz, J. Finster, G. Wendt et al., ESCA investigations of some NiO/SiO2 and NiO—Al2O3/SiO2 catalysts. J. Electron Spectrosc. Relat. Phenom. 16(3), 267–276 (1979)

    Article  Google Scholar 

  43. S. Livraghi, M.C. Paganini, E. Giamello et al., Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 128(49), 15666 (2006)

    Article  Google Scholar 

  44. Q. Meng, T. Wang, E. Liu et al., Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals. Phys. Chem. Chem. Phys. 15(24), 9549–9561 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work at Chongqing Normal University was supported by the Natural Science Foundation of Chongqing Municipality (cstc2014jcyjA50035), the Natural Science Foundation of China (No. 21271192), and Chongqing Key Laboratory of inorganic functional materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Yang, L., Jiang, L. et al. Synthesis and characterization of visible-light-active mesoporous titania by doping Ni and N. J Mater Sci: Mater Electron 28, 18164–18172 (2017). https://doi.org/10.1007/s10854-017-7762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7762-0

Navigation