Skip to main content
Log in

Measurement of ZrC properties up to 5000 K by fast electrical pulse heating method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sintered zirconium carbide (C/Zr ≈ 0.95) was studied by pulsed electrical heating method with microsecond duration. Thermophysical properties such as Joule energy, heat of melting, the specific heat, and electrical resistance were measured in the temperature range of 2500–5000 K by this method for the first time. The steep increase of the specific heat just before melting may be associated with the formation of nonequilibrium pairs point Frenkel defects at high temperatures under fast heating. It was established that the melting of the carbide occurs in the temperature range: solidus—3450 K and liquidus—3850 K, that is close to the values presented in some equilibrium phase diagrams of the system Zr–C. This means that there is no shift of the phase transition points at the heating rates up to 108 K/s, and makes it possible to use this method for the study of high temperature behavior of the complex substances. The comparison of the data of measured properties with the literature data is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. H.F. Jackson and W.E. Lee: Properties and characteristics of ZrC. In Comprehensive Nuclear Materials, H.F. Jackson, ed. (Elsevier Ltd, London, 2012); pp. 339–369.

    Chapter  Google Scholar 

  2. Y. Katoh, G. Vasudevamurthy, T. Nozawa, and L.L. Snead: Properties of zirconium carbide for nuclear fuel applications. J. Nucl. Mater. 441, 718 (2013).

    Article  CAS  Google Scholar 

  3. A.F. Guillermet: Analysis of thermochemical properties and phase stability in the zirconium-carbon system. J. Alloys Compd. 217, 69 (1995).

    Article  Google Scholar 

  4. H.F. Jackson, D.D. Jayaseelan, W.E. Lee, M.J. Reece, F. Inam, D. Manara, C. Perinetti-Casoni, F. De Bruycker, and K. Boboridis: Laser melting of spark plasma-sintered zirconium carbide: Thermophysical properties of a generation IV very high-temperature reactor material. Int. J. Appl. Ceram. Technol. 7(3), 316 (2010).

    Article  CAS  Google Scholar 

  5. H.F. Jackson, D.D. Jayaseelan, D. Manara, C. Perinetti-Casoni, and W.E. Lee: Laser melting of zirconium carbide: Determination of phase transitions in refractory ceramic systems. J. Am. Ceram. Soc. 94(10), 3561 (2011).

    Article  CAS  Google Scholar 

  6. D. Manara, H.F. Jackson, C. Perinetti-Casoni, K. Boboridis, M.J. Welland, L. Luzzi, P.M. Ossi, and W.E. Lee: The ZrC–C eutectic structure and melting behaviour: A high-temperature radiance spectroscopy study. J. Eur. Ceram. Soc. 33, 1349 (2013).

    Article  CAS  Google Scholar 

  7. A.I. Savvatimskiy and S.V. Onufriev: Method and apparatus for studying high-temperature properties of conductive materials in the interests of nuclear power engineering. Phys. At. Nucl. 79(14), 1 (2016).

    Article  Google Scholar 

  8. S.V. Onufriev, A.I. Savvatimskiy, and A.M. Kondratyev: Tantalum melting temperature under fast (microseconds) heating: Overheating is not found. High Temp.–High Pressures 43, 217 (2014).

    CAS  Google Scholar 

  9. A.M. Knyazkov, S.D. Kurbakov, A.I. Savvatimskiy, M.A. Sheindlin, and V.I. Yanchuk: Melting of carbides by electrical pulse heating. High Temp.–High Pressures 40, 349 (2011).

    CAS  Google Scholar 

  10. A. Kondratyev, S. Muboyadzhyan, S. Onufriev, and A. Savvatimskiy: The application of the fast pulse heating method for investigation of carbon-rich side of Zr–C phase diagram under high temperatures. J. Alloys Compd. 631, 52 (2015).

    Article  CAS  Google Scholar 

  11. S.V. Onufriev, A.I. Savvatimskiy, and V.I. Yanchuk: Measurement of the thermal properties of zirconium and tantalum carbides at high temperatures (up to and above melting point). Meas. Tech. 54(8), 926 (2011).

    Article  CAS  Google Scholar 

  12. T. Reithof, B.D. Acchione, and E.R. Branyan: High-temperature spectral emissivity studies on some refractory metals and carbides. In Temperature, its Measurement and Control in Science and Industry, Vol. 3(2), C.M. Herzfeld, ed. (Reinhold Publishing Corp., New York, 1967); pp. 515–522.

    Google Scholar 

  13. T.E. Zapadaeva, V.A. Petrov, and V.V. Sokolov: Emissivity of stoichiometric zirconium and titanium carbides at high-temperatures. High Temp. 19(2), 313 (1981).

    CAS  Google Scholar 

  14. H.L. Schick: Thermodynamics of Certain Refractory Compounds, Vol. 1–2 (Academic Press, New York, London, 1966). Reprinted in: R.B. Kotel’nikov, S.N. Bashlykov, Z.G. Galiakbarov and A.I. Kashtanov: Osobo tugoplavkie elementy i soedineniya [Especially refractory elements and compounds] (Metallurgiya, Moscow, 1968); p. 376 (in Russian).

    Google Scholar 

  15. A.E. Sheindlin, V.Y. Chekhovskoy, and E.E. Shpilrain: Research on thermophysical properties of solids at high temperatures at the Institute for High Temperatures of the USSR Academy of Sciences. High Temp.–High Press. 2, 1 (1970).

    CAS  Google Scholar 

  16. A.S. Bolgar, A.G. Turchanin, and V.V. Fesenko: Thermodynamic Properties of Carbides (Naukova Dumka, Kiev, 1973) (in Russian).

    Google Scholar 

  17. I. Barin: Thermochemical Data of Pure Substances, 3rd ed., Vol. 1–2 (VCH, Weinheim, 1995).

    Book  Google Scholar 

  18. M.W. Chase, Jr.: NIST-JANAF themochemical tables, fourth edition. J. Phys. Chem. Ref. Data, Monogr. 9, 1 (1998).

    Google Scholar 

  19. L.S. Levinson: High-temperature heat contents of TiC and ZrC. J. Chem. Phys. 42(8), 2891 (1965).

    Article  CAS  Google Scholar 

  20. E.K. Storms and J. Griffin: The vaporization behavior of the defect carbides. IV. The zirconium–carbon system. High Temp. Sci. 5(4), 291 (1973).

    CAS  Google Scholar 

  21. V.A. Petrov, V.Ya. Chekhovskoy, A.E. Sheindlin, V.A. Nikolaeva, and L.P. Fomina: Total hemispherical emissive power, monochromatic (λ = 0.65 µm) emissive power and specific electrical resistivity of zirconium and niobium carbides in temperature range 1200–3500 K. High Temp. 5(6), 889 (1967).

    Google Scholar 

  22. L.N. Grossman: High-temperature thermophysical properties of zirconium carbide. J. Am. Ceram. Soc. 48(5), 236 (1965).

    Article  CAS  Google Scholar 

  23. M.V. Brykin: Enthalpy and numerical simulation of phase transitions in a Zr–C system. High Temp. 53(6), 810 (2015).

    Article  CAS  Google Scholar 

  24. A.G. Turchanin: On the enthalpy of formation of thermal vacancies in the cubic carbides of transition metals. Russ. J. Phys. Chem. A, 54(11), 2962 (1980).

    CAS  Google Scholar 

  25. R.V. Sara: The system zirconium–carbon. J. Am. Ceram. Soc. 48(5) 243 (1965).

    Article  CAS  Google Scholar 

  26. T.B. Massalski, ed.: Binary Alloy Phase Diagrams (ASM International, Materials Park, 1990). Shown in: H.W. Hugosson, U. Jansson, B. Johansson, and O. Eriksson: Phase stability diagrams of transition metal carbides, a theoretical study. Chem. Phys. Lett. 333, 444 (2001).

    Google Scholar 

  27. T. Bgasheva, M. Brykin, T. Falyakhov, and M. Sheindlin: Study of high-temperature phase diagram of Zr-C system in the domain of solid solution by laser-pulse melting. Presented at the Calphad XLIV International Conference on Computer Coupling of Phase Diagrams and Thermochemistry, Calphad XLIV, Loano (Italy), May 31–June 5 (2015).

  28. S.V. Onufriev, A.M. Kondratyev, A.I. Savvatimskiy, G.E. Val’yano, and S.A. Muboyadzhyan: Investigation of the high temperature properties of zirconium nitride by impulse current heating method. High Temp. 53(3), 455 (2015).

    Article  CAS  Google Scholar 

  29. O. Cedillos-Barraza, D. Manara, K. Boboridis, T. Watkins, S. Grasso, D.D. Jayaseelan, R.J.M. Konings, M.J. Reece, and W.E. Lee: Investigating the highest melting temperature materials: A laser melting study of the TaC–HfC system. Sci. Rep. 6, 37962 (2016).

    Article  CAS  Google Scholar 

  30. Ya.I. Frenkel: Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946).

    Google Scholar 

  31. Ya.I. Frenkel: Introduction to the Theory of Metals, 4th ed. (Nauka, Leningrad, 1972) (in Russian).

    Google Scholar 

  32. A.I. Savvatimskiy, S.V. Onufriev, and A.M. Kondratyev: Capabilities of pulse current heating to study the properties of graphite at elevated pressures and at high temperatures (up to 5000 K). Carbon 98, 534 (2016).

    Article  CAS  Google Scholar 

  33. N.D. Orekhov and V.V. Stegailov: Graphite melting: Atomistic kinetics bridges theory and experiment. Carbon 87, 358 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study is executed under support of the Russian Science Foundation in the framework of the grant no. 17-19-01099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Savvatimskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savvatimskiy, A.I., Onufriev, S.V. & Muboyadzhyan, S.A. Measurement of ZrC properties up to 5000 K by fast electrical pulse heating method. Journal of Materials Research 32, 1287–1294 (2017). https://doi.org/10.1557/jmr.2017.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.61

Navigation