Skip to main content

Advertisement

Log in

Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ceramic fiber-matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber-matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method for extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ∼2.5 J/m2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. This research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. D.C. Phillips: The fracture energy of carbon-fibre reinforced glass. J. Mater. Sci. 7, 1175–1191 (1972).

    CAS  Google Scholar 

  2. K.M. Prewo and J.J. Brennan: High-strength silicon carbide fibre-reinforced glass-matrix composites. J. Mater. Sci. 15, 463–468 (1980).

    CAS  Google Scholar 

  3. J.J. Brennan and K.M. Prewo: Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness. J. Mater. Sci. 17, 2371–2383 (1982).

    CAS  Google Scholar 

  4. J.J. Brennan, R.E. Tressler, G.L. Messing, C.G. Pantano, and R.E. Newnham: Interfacial characterization of glass and glass-ceramic matrix/nicalon SiC fiber composites. In Tailoring Multiphase and Composite Ceramics (Springer, Boston, Massachusetts, 1986), pp. 549–560.

    Google Scholar 

  5. R.A. Sambell, A. Briggs, D.C. Phillips, and D.H. Bowen: Carbon fibre composites with ceramic and glass matrices. Part 2: Continuous fibres. J. Mater. Sci. 7, 676–681 (1972).

    CAS  Google Scholar 

  6. X.W. Yin, L.F. Cheng, L.T. Zhang, N. Travitzky, and P. Greil: Fibre-reinforced multifunctional SiC matrix composite materials. Int. Mater. Rev. 62, 117–172 (2016).

    Google Scholar 

  7. K. Yueh and K.A. Terrani: Silicon carbide composite for light water reactor fuel assembly applications. J. Nucl. Mater. 448, 380–388 (2014).

    CAS  Google Scholar 

  8. L.L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, and M. Sawan: Silicon carbide composites as fusion power reactor structural materials. J. Nucl. Mater. 417, 330–339 (2011).

    CAS  Google Scholar 

  9. R. Naslain and F. Christin: SiC-matrix composite materials for advanced jet engines. MRS Bull. 28, 654–658 (2003).

    CAS  Google Scholar 

  10. S. Yashiro, K. Ogi, and M. Oshita: High-velocity impact damage behavior of plain-woven SiC/SiC composites after thermal loading. Composites, Part B Eng. 43, 1353–1362 (2012).

    CAS  Google Scholar 

  11. Y. Katoh, L.L. Snead, I. Szlufarska, and W.J. Weber: Radiation effects in SiC for nuclear structural applications. Solid State Mater. Sci. 16, 143–152 (2012).

    CAS  Google Scholar 

  12. R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 5th ed. (John Wiley & Sons, Inc., Hoboken, NJ, 1996).

    Google Scholar 

  13. B.C. Carter and G.M. Norton: Ceramic Materials (Springer, Boston, MA, 2007).

    Google Scholar 

  14. A.G. Evans and F.W. Zok: The physics and mechanics of fibre-reinforced brittle matrix composites. J. Mater. Sci. 29, 3857–3896 (1994).

    CAS  Google Scholar 

  15. Y. Katoh, L.L. Snead, C.H. Henager, T. Nozawa, T. Hinoki, A. Iveković, S. Novak, and S.M. Gonzalez De Vicente: Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 455, 387–397 (2014).

    CAS  Google Scholar 

  16. C.H. Carter, R.F. Davis, and J. Bentley: Kinetics and mechanisms of high-temperature creep in silicon carbide: II, chemically vapor deposited. J. Am. Ceram. Soc. 67, 732–740 (1984).

    CAS  Google Scholar 

  17. K.A. Terrani, B.A. Pint, C.M. Parish, C.M. Silva, L.L. Snead, and Y. Katoh: Silicon carbide oxidation in steam up to 2 MPa. J. Am. Ceram. Soc. 97, 2331–2352 (2014).

    CAS  Google Scholar 

  18. L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, and D.A. Petti: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329–377 (2007).

    CAS  Google Scholar 

  19. T. Hinoki, E. Lara-Curzio, and L.L. Snead: Mechanical properties of high purity SiC fiber-reinforced CVI-SiC matrix composites. J. Mater. Res. 11, 391–397 (2008).

    Google Scholar 

  20. T. Nozawa, Y. Katoh, and L.L. Snead: The effect of neutron irradiation on the fiber/matrix interphase of silicon carbide composites. J. Nucl. Mater. 384, 195–211 (2009).

    CAS  Google Scholar 

  21. Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R.J. Shinavski, A. Hasegawa, and L.L. Snead: Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects. J. Nucl. Mater. 448, 448–476 (2014).

    CAS  Google Scholar 

  22. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, and L.L. Snead: Accident tolerant fuels for LWRs: A perspective. J. Nucl. Mater. 448, 374–379 (2014).

    CAS  Google Scholar 

  23. R.J. Kerans and R.S. Hay: Interface design for oxidation-resistant ceramic composites. J. Am. Ceram. Soc. 85, 2599–2632 (2002).

    CAS  Google Scholar 

  24. K.A. Keller, T. Mah, T.A. Parthasarathy, and C.M. Cooke: Fugitive interfacial carbon coatings for oxide/oxide composites. J. Am. Ceram. Soc. 83, 329–336 (2000).

    CAS  Google Scholar 

  25. J. Wendorff, R. Janssen, and N. Claussen: Platinum as a weak interphase for fiber-reinforced oxide-matrix composites. J. Am. Ceram. Soc. 40, 2738–2740 (1998).

    Google Scholar 

  26. L. Filipuzzi, G. Camus, and R. Naslain: Oxidation mechanisms and kinetics of 1 D-SiC/C/SiC composite materials: I, an experimental approach. J. Am. Ceram. Soc. 47, 459–466 (1994).

    Google Scholar 

  27. A.G. Evans, F.W. Zok, R.M. McMeeking, and Z.Z. Du: Models of high-temperature, environmentally assisted embrittlement in ceramic-matrix composites. J. Am. Ceram. Soc. 79, 2345–2352 (1996).

    CAS  Google Scholar 

  28. A.J. Eckel, J.D. Cawley, and T.A. Parthasarathy: Oxidation kinetics of a continuous carbon phase in a nonreactive matrix. J. Am. Ceram. Soc. 78, 972–980 (1995).

    CAS  Google Scholar 

  29. T.A. Parthasarathy, C.A. Folsom, and L.P. Zawada: Combined effects of exposure to salt (NaCl) water and oxidation on the strength of uncoated and BN-coated Nicalon™ fibers. J. Am. Ceram. Soc. 86, 1812–1818 (1998).

    Google Scholar 

  30. R. Naslain and F. Langlais: CVD-processing of ceramic-ceramic composite materials. In Tailoring Multiphase and Composite Ceramics (Springer, Boston, MA, 1986), pp. 145–164.

    Google Scholar 

  31. R. Naslain, O. Dugne, A. Guette, J. Sevely, C.R. Brosse, J-P. Rocher, and J. Cotteret: Boron nitride interphase in ceramic-matrix composites. J. Am. Ceram. Soc. 74, 2482–2488 (1991).

    CAS  Google Scholar 

  32. J. Lamon: Chemical vapor infiltrated SiC/SiC composites. In Handbook of Ceramic Composite (Springer, Boston, Massachusetts, 2005), pp. 55–76.

    Google Scholar 

  33. H.E. Khalifa, C.P. Deck, O. Gutierrez, G.M. Jacobsen, and C.A. Back: Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications. J. Nucl. Mater. 457, 227–240 (2015).

    CAS  Google Scholar 

  34. C.P. Deck, G.M. Jacobsen, J. Sheeder, O. Gutierrez, J. Zhang, J. Stone, H.E. Khalifa, and C.A. Back: Characterization of SiC–SiC composites for accident tolerant fuel cladding. J. Nucl. Mater. 446, 667–681 (2015).

    Google Scholar 

  35. S. Bertrand, C. Droillard, R. Pailler, X. Bourrat, and R. Naslain: TEM structure of (PyC/SiC) multilayered interphases in SiC/SiC composites. J. Eur. Ceram. Soc. 20, 1–13 (2000).

    CAS  Google Scholar 

  36. R.R. Naslain, R.J.F. Pailler, and J.L. Lamon: Single and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions: An overview. Int. J. Appl. Ceram. Technol. 7, 263–275 (2010).

    CAS  Google Scholar 

  37. G.N. Morscher, D.R. Bryant, and R.E. Tressler: Environmental durability of BN-based interphases (for SiC(f)/SiC(m) composites) in H2O-containing atmospheres at intermediate temperatures. Ceram. Eng. Sci. Proc. 18, 525–534 (1997).

    CAS  Google Scholar 

  38. C.G. Cofer and J. Economy: Oxidative and hydrolytic stability of boron nitride—A new approach to improving the oxidation resistance of carbonaceous structures. Carbon 33, 389–395 (1995).

    CAS  Google Scholar 

  39. G. Newsome, L.L. Snead, T. Hinoki, Y. Katoh, and D. Peters: Evaluation of neutron irradiated silicon carbide and silicon carbide composites. J. Nucl. Mater. 371, 76–89 (2007).

    CAS  Google Scholar 

  40. J. Lamon and N. Bansal: Ceramic Matrix Composites: Materials, Modeling and Technology (John Wiley & Sons, Hoboken, New Jersey, 2015).

    Google Scholar 

  41. Z. Xia and L. Li: Understanding interfaces and mechanical properties of ceramic matrix composites. In Advances in Ceramic Matrix Composites (Woodhead Publishing, Sawston, U.K., 2014), pp. 367–385.

    Google Scholar 

  42. M-Y. He and J.W. Hutchinson: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 31, 3443–3455 (1989).

    Google Scholar 

  43. J. Dundurs: Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 36, 650–652 (1969).

    Google Scholar 

  44. B.K. Ahn: Interfacial Mechanics in Fiber-Reinforced Composites: Mechanics of Single and Multiple Cracks in CMCs (Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1997), pp. 1–160.

    Google Scholar 

  45. M. Braginsky and C.P. Przybyla: Simulation of crack propagation/deflection in ceramic matrix continuous fiber reinforced composites with weak interphase via the extended finite element method. Compos. Struct. 136, 538–545 (2016).

    Google Scholar 

  46. D. Martinez and V. Gupta: Energy criterion for crack deflection an interface between two orthotropic media. J. Mech. Phys. Solids 42, 1247–1271 (1994).

    Google Scholar 

  47. Y. Liang and K.M. Liechti: Toughening mechanisms in mixed-mode interfacial fracture. Int. J. Solids Struct. 32, 957–978 (1995).

    Google Scholar 

  48. N.A. Fleck: Crack path selection in a brittle adhesive layer. Int. J. Solids Struct. 27, 1683–1703 (1991).

    Google Scholar 

  49. P. Isaksson and P. Stahle: Mode II crack paths under compression in brittle solids—A theory and experimental comparison. Int. J. Solids Struct. 39, 2281–2297 (2002).

    Google Scholar 

  50. Z. Cedric and J.W. Hutchinson: Mode II fracture toughness of a brittle adhesive layer. Int. J. Solids Struct. 31, 1133–1148 (1994).

    Google Scholar 

  51. B.R.K. Blackman: Mode II fracture testing of composites: A new look at an old problem. Eng. Fract. Mech. 73, 2443–2455 (2006).

    Google Scholar 

  52. J. Handin: On the Coulomb–Mohr failure criterion. J. Geophys. Res. 74, 5343–5348 (1969).

    Google Scholar 

  53. M.Y. He, A.G. Anthony, and J.W. Hutchinson: Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. Int. J. Solids Struct. 31, 3443–3455 (1994).

    Google Scholar 

  54. K. Ozawa, T. Hinoki, T. Nozawa, Y. Katoh, Y. Maki, S. Kondo, S. Ikeda, and A. Kohyama: Evaluation of fiber/matrix interfacial strength of neutron irradiated SiC/SiC composites using hysteresis loop analysis of tensile test. Mater. Trans. 47, 207–210 (2006).

    CAS  Google Scholar 

  55. C.H. Hsueh, F. Rebillat, J. Lamon, and E. Lara-Curzio: Analyses of fiber push-out tests performed on nicalon/SiC composites with tailored interfaces. Composites, Part B Eng. 5, 1387–1401 (2008).

    Google Scholar 

  56. F. Rebillat, J. Lamon, R. Naslain, E. Lara-Curzio, M.K. Ferber, and T.M. Besmann: Interfacial bond strength in SiC/C/SiC composite materials, as studied by single-fiber push-out tests. J. Am. Ceram. Soc. 81, 965–978 (1998).

    CAS  Google Scholar 

  57. C.H. Hsueh: Interfacial debonding and fibre pull-out stresses of fibre-reinforced composites. Mater. Sci. Eng., A 123, 1–11 (1990).

    Google Scholar 

  58. D.K. Shetty: Shear-lag analysis of fiber push-out (indentation) tests for estimating interfacial friction stress in ceramic matrix composites. J. Am. Ceram. Soc. 71, C107–C109 (1988).

    CAS  Google Scholar 

  59. P. Lawrence: Some theoretical consideration of fibre pull-out from an elastic matrix. J. Mat. Sci. 7, 1–6 (1972).

    CAS  Google Scholar 

  60. F. Rebillat, J. Lamon, and A. Guette: The concept of a strong interface applied to SiC/SiC composites with a BN interphase. Acta Mater. 48, 4609–4618 (2000).

    CAS  Google Scholar 

  61. W.M. Mueller, J. Moosburger-Will, M.G.R. Sause, and S. Horn: Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness. J. Eur. Ceram. Soc. 33, 441–451 (2013).

    CAS  Google Scholar 

  62. C. Shin, H.H. Jin, W.J. Kim, and J.Y. Park: Mechanical properties and deformation of cubic silicon carbide micropillars in compression at room temperature. J. Am. Ceram. Soc. 95, 2944–2950 (2012).

    CAS  Google Scholar 

  63. B.N. Jaya and V. Jayaram: Fracture testing at small-length scales: From plasticity in Si to brittleness in Pt. J. Mater. Sci. 68, 94–108 (2016).

    CAS  Google Scholar 

  64. W. Gerberich, J. Michler, W. Mook, R. Ghisleni, F. Östlund, D. Stauffer, and R. Ballarini: Scale effects for strength, ductility, and toughness in ‘brittle’ materials. J. Mater. Res. 24, 898–906 (2009).

    CAS  Google Scholar 

  65. J. Dohr, D.E.J. Armstrong, E. Tarleton, T. Couvant, and S. Lozano-Perez: The influence of surface oxides on the mechanical response of oxidized grain boundaries. Thin Solid Films 632, 17–22 (2017).

    CAS  Google Scholar 

  66. D.E.J. Armstrong, A.J. Wilkinson, and S.G. Roberts: Micro-mechanical measurements of fracture toughness of bismuth embrittled copper grain boundaries. Philos. Mag. Lett. 91, 394–400 (2011).

    CAS  Google Scholar 

  67. P. Hosemann: Small-scale mechanical testing on nuclear materials: Bridging the experimental length-scale gap. Scr. Mater. 143, 161–168 (2018).

    CAS  Google Scholar 

  68. C. Shih, Y. Katoh, K.J. Leonard, H. Bei, and E. Lara-Curzio: Determination of interfacial mechanical properties of ceramic composites by the compression of micro-pillar test specimens. J. Mater. Sci. 48, 5219–5224 (2013).

    CAS  Google Scholar 

  69. J. Kabel, Y. Yang, M. Balooch, C. Howard, T. Koyanagi, K.A. Terrani, Y. Katoh, and P. Hosemann: Micro-mechanical evaluation of SiC–SiC composite interphase properties and debond mechanisms. Composites, Part B Eng. 131, 1–18 (2017).

    Google Scholar 

  70. H.G. Tattersall and G. Tappin: The work of fracture and its measurement in metals, ceramics and other materials. J. Mater. Sci. 1, 296–301 (1966).

    Google Scholar 

  71. A. Anaka, T. Shibayama, S. Takeda, and M. Yokoyama: Recent progress of Hi-nicalon type S development. Ceram. Eng. Sci. Proc. 24, 217–223 (2003).

    Google Scholar 

  72. H. Ichikawa: Development of high performance SiC fibers derived from polycarbosilian using electron beam irradiation curing-a review. J. Ceram. Soc. 114, 455–460 (2006).

    CAS  Google Scholar 

  73. C. Sauder and J. Lamon: Tensile creep behavior of SiC-based fibers with a low oxygen content. J. Am. Ceram. Soc. 90, 1146–1156 (2007).

    CAS  Google Scholar 

  74. C. Sauder, A. Brusson, and J. Lamon: Influence of interface characteristics on the mechanical properties of Hi-nicalon type-S or tyranno-SA3 fiber-reinforced SiC/SiC minicomposites. Int. J. Appl. Ceram. Technol. 7, 291–303 (2010).

    CAS  Google Scholar 

  75. Y. Katoh, L.L. Snead, T. Nozawa, S. Kondo, and J.T. Busby: Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures. J. Nucl. Mater. 403, 48–61 (2010).

    CAS  Google Scholar 

  76. C. Karthik, J. Kane, D.P. Butt, W.E. Windes, and R. Ubic: In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite. J. Nucl. Mater. 412, 321–326 (2011).

    CAS  Google Scholar 

  77. C. Karthik, J. Kane, D.P. Butt, W.E. Windes, and R. Ubic: Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites. Carbon 86, 124–131 (2015).

    CAS  Google Scholar 

  78. M. Takeuchi, S. Muto, T. Tanabe, H. Kurata, and K. Hojou: Structural change in graphite under electron irradiation at low temperatures. J. Nucl. Mater. 271–272, 280–284 (1999).

    Google Scholar 

  79. L.L. Snead, T.D. Burchell, and Y. Katoh: Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature. J. Nucl. Mater. 381, 55–61 (2008).

    CAS  Google Scholar 

  80. Z. Liu, S.M. Zhang, J.R. Yang, J.Z. YangLiu, Y.L. Yang, and Q.S. Zheng: Interlayer shear strength of single crystalline graphite. Acta Mech. Sin. 28, 978–982 (2012).

    CAS  Google Scholar 

  81. M. Sakai and R.C. Bradt: Fracture toughness anisotropy of a pyrolytic carbon. J. Mater. Sci. 21, 1491–1501 (1986).

    CAS  Google Scholar 

  82. R.J. Kerans, T.A. Parthasarathy, F. Rebillat, and J. Lamon: Interface properties in high-strength nicalon/C/SiC composites, as determined by rough surface analysis of fiber push-out tests. J. Am. Ceram. Soc. 81, 1881–1887 (1998).

    CAS  Google Scholar 

  83. R.O. Ritchie: Fatigue and fracture of pyrolytic carbon: A damage-tolerant approach to structural integrity and life prediction in ceramic heart valve protheses. J. Heart. Valve Dis. 5, S9–S31 (1996).

    Google Scholar 

  84. Y. Katoh, L.L. Snead, C.H. Henager, A. Hasegawa, A. Kohyama, B. Riccardi, and H. Hegeman: Current status and critical issues for development of SiC composites for fusion applications. J. Nucl. Mater. 367–370, 659–671 (2007).

    Google Scholar 

  85. W. Yang, A. Kohyama, T. Noda, Y. Katoh, T. Hinoki, H. Araki, and J. Yu: Interfacial characterization of CVI-SiC/SiC composites. J. Nucl. Mater. 311, 1088–1092 (2002).

    Google Scholar 

  86. T. Hinoki: Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique. J. Nucl. Mater. 263, 1567–1571 (1998).

    Google Scholar 

  87. S. Bertrand, R. Pailler, and J. Lamon: Influence of strong fiber/coating interfaces on the mechanical behavior and lifetie of Hi-nicalon/(PyC/SiC)n/SiC minicomposites. J. Am. Ceram. Soc. 84, 787–794 (2001).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy (DOE), Office of Nuclear Energy’s Nuclear Science User Facilities (NSUF) program. A portion of this study was also supported by the U.S. DOE, Office of Nuclear Energy for the Advanced Fuels Campaign of the Fuel Cycle R&D program under contact DE-AC05-00OR22725 with Oak Ridge National Laboratory managed by UT Battelle, LLC. In addition, we would like to thank the Nuclear Regulatory Commission (NRC) fellowship program and the DOE-NEUP program for support. The authors would like to acknowledge the EPSRC for their support through grant number EP/N017110/1. Lastly, we would like to thank those involved with the UC Berkeley BNC facility and the Lawrence Berkeley National Laboratory National Center for Electron Microscopy (LBNL NCEM) for enabling this research through access and expertise to the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hosemann.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabel, J., Hosemann, P., Zayachuk, Y. et al. Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction. Journal of Materials Research 33, 424–439 (2018). https://doi.org/10.1557/jmr.2017.473

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.473

Navigation