Skip to main content
Log in

Aging behavior of 17-4 PH stainless steel studied using XRDLPA for separating the influence of precipitation and dislocations on microstrain

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The aging behavior of precipitation hardenable 17-4 PH stainless steel is studied by analyzing the changes in microstrain, crystallite size, and dislocation density derived from the modified Williamson–Hall (mWH) method and the Fourier analysis of XRD profiles. Aging treatment of this steel at 380, 430, and 480 °C for 0.5, 1, and 3 h durations leads to changes in the microstrain due to precipitation and substructural changes caused by dislocation annihilation. The microstrain estimated from the mWH method is dominated by the precipitate-induced effects. The influence of precipitates and dislocations on the mean squared strain 〈ε2(L)〉 are separated by fitting the variation of 〈ε2(L)〉 with an expression P0 + P1/L + P2/L2, where the parameter (P0)0.5 and P1 are shown to be related to the precipitate-induced and dislocation density-induced microstrain, respectively. The study shows that the XRD profile analysis can be used to separate the combined effects of precipitation and dislocation annihilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. U.K. Viswanathan, P.K.K. Nayar, and R. Krishnan: Kinetics of precipitation in 17-4 PH stainless steel. Mater. Sci. Technol. 5, 346 (1989).

    Article  CAS  Google Scholar 

  2. U.K. Viswanathan, S. Banerjee, and R. Krishnan: Effects of aging on the microstructure of 17-4 PH stainless steel. Mater. Sci. Eng., A 104, 181 (1988).

    Article  Google Scholar 

  3. M.K. Miller and M.G. Burke: Characterization of copper precipitation in a 17/4 pH steel: A combined APFIM/TEM Study In 5th International Symposium on the Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors (American Nuclear Society, Monterery, California, 1992); pp. 689–695.

    Google Scholar 

  4. M. Murayama, Y. Katayama, and K. Hono: Microstructural evolution in a 17-4 PH stainless steel after aging at 400 °C. Metall. Mater. Trans. A 30, 345 (1999).

    Article  Google Scholar 

  5. R. Bhambroo, S. Roychowdhury, V. Kain, and V.S. Raja: Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainless steel. Mater. Sci. Eng., A 568, 127 (2013).

    Article  CAS  Google Scholar 

  6. S. Mahadevan, R. Manojkumar, T. Jayakumar, C.R. Das, and B.P.C. Rao: Precipitation induced changes in microstrain and its relation with hardness and tempering parameter in 17-4 PH stainless steel. Metall. Mater. Trans. A 47, 3109 (2016).

    Article  CAS  Google Scholar 

  7. C.N. Hsiao, C.S. Chiou, and J.R. Yang: Aging reactions in a 17-4 PH stainless steel. Mater. Chem. Phys. 74, 134 (2002).

    Article  CAS  Google Scholar 

  8. T. Vershinina and M. Leont’eva-Smirnova: Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel. Mater. Charact. 125, 23 (2017).

    Article  CAS  Google Scholar 

  9. B.E. Warren and B.L. Averbach: The effect of cold-work distortion on X-ray patterns. J. Appl. Phys. 21, 595 (1950).

    Article  CAS  Google Scholar 

  10. G.K. Williamson and W.H. Hall: X ray line braodening from filed aluminum and wolfram. Acta Metall. 1, 22 (1953).

    Article  CAS  Google Scholar 

  11. R.K. Nandhi, H.K. Kuo, W. Schlosberg, G. Wissler, J.B. Cohen, and B. Crist, Jr.: Single peak methods for Fourier analysis of peak shapes. J. Appl. Crystallogr. 17, 22 (1984).

    Article  Google Scholar 

  12. T. Ungár and A. Borbély: The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 69, 3173 (1996).

    Article  Google Scholar 

  13. P.W. Stephens: Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Crystallogr. 32, 281 (1999).

    Article  CAS  Google Scholar 

  14. J. Birkenstock, R.K. Fischer, and T. Messner: BRASS, Ver 2.0: The Bremen Rietveld Analysis and Structure Suite (2005). Available at: www.brass.uni-bremen.de (accessed 14 September 2017).

  15. S. Mahadevan, T. Jayakumar, B.P.C. Rao, A. Kumar, K.V. Rajkumar, and B. Raj: X-ray diffraction profile analysis for characterizing isothermal aging behavior of M250 grade maraging steel. Metall. Mater. Trans. A 39, 1978 (2008).

    Article  Google Scholar 

  16. R.L. Rothman and J.B. Cohen: X-ray study of faulting in BCC metals and alloys. J. Appl. Phys. 42 (3), 971 (1971).

    Article  CAS  Google Scholar 

  17. M. Wilkens: X-ray line broadening of plastically deformed crystals. In Proceedings on the 5th Riso International Symposium on the Material Science (Riso National Laboratory, Roskilde, Denmark, 1984); pp. 153–168.

    Google Scholar 

  18. D. Balzar and H. Ledbetter: Voigt-function modeling in Fourier analysis of size and strain broadened X-ray diffraction peaks. J. Appl. Crystallogr. 26, 97 (1993).

    Article  Google Scholar 

  19. J.G.M. Van Berkum, A.C. Vermeulen, R. Delhez, H. De Keijser, and E.J. Mittemeijer: Applicabilities of the Warren–Averbach analysis and an alternative analysis for separation of size and strain broadening. J. Appl. Crystallogr. 27, 345 (1994).

    Article  Google Scholar 

  20. S.A. Howard and R.L. Snyder: The use of direct convolution products in profile and pattern fitting algorithms. I. Development of the algorithms. J. Appl. Crystallogr. 22, 238 (1989).

    Article  CAS  Google Scholar 

  21. S. Enzo, G. Fagherazzi, A. Bendetti, and S. Polizzi: A profile-fitting procedure for analysis of broadened X-ray diffraction. J. Appl. Crystallogr. 21, 536 (1988).

    Article  Google Scholar 

  22. F. Sanchez-Bajo, A.L. Ortiz, and F.L. Cumbrera: Novel analytical model for the determination of grain size distributions in nanocrystalline materials with low lattice microstrains by X-ray diffractometry. Acta Mater. 54, 1 (2006).

    Article  CAS  Google Scholar 

  23. D. Prabal: On use of pseudo-Voigt profiles in diffraction line broadening analysis. Fizika A 9, 61 (2000).

    Google Scholar 

  24. G. Ribárik, T. Ungár, and J. Gubicza: MWP-fit: A program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. J. Appl. Crystallogr. 34, 669 (2001).

    Article  Google Scholar 

  25. G.K. Williamson and R.E. Smallman: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos. Mag. 1, 34 (1956).

    Article  CAS  Google Scholar 

  26. D.C. Hurley, D. Balzar, and P.T. Purtscher: Nonlinear ultrasonic assessment of precipitation hardening in ASTM A710 steel. J. Mater. Res. 15, 2036 (2000).

    Article  CAS  Google Scholar 

  27. J.W. Martin: Micromechanisms in Particle-Hardened Alloys (Cambridge University Press, New York, NY, 1980).

    Google Scholar 

  28. S.K. Ghosh, A. Haldar, and P.P. Chattopadhyay: On the Cu precipitation behavior in thermomechanically processed low carbon microalloyed steels. Mater. Sci. Eng., A 519, 88 (2009).

    Article  Google Scholar 

  29. K. Huang, Z. Qinglong, L. Yanjun, and M. Knut: Two-stage annealing of a cold-rolled Al–Mn–Fe–Si alloy with different microchemistry states. J. Mater. Process. Technol. 221, 87 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. C.R. Das, Metallurgy and Materials Group (MMG), for his help in acquiring the micrographs. The authors express their gratitude to Dr. T. Jayakumar, former Director, MMG, Indira Gandhi Center for Atomic Research (IGCAR) presently Visiting Professor, NIT, Warangal for many fruitful discussions during the course of the present study. The authors would also like to thank Dr. G. Amarendra, Director, MMG, IGCAR and Dr. A.K. Bhaduri, Director, IGCAR for their constant encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manojkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manojkumar, R., Mahadevan, S., Mukhopadhyay, C.K. et al. Aging behavior of 17-4 PH stainless steel studied using XRDLPA for separating the influence of precipitation and dislocations on microstrain. Journal of Materials Research 32, 4263–4271 (2017). https://doi.org/10.1557/jmr.2017.396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.396

Navigation