Skip to main content
Log in

Precipitation-Induced Changes in Microstrain and Its Relation with Hardness and Tempering Parameter in 17-4 PH Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

17-4 PH (precipitation hardening) stainless steel is a soft martensitic stainless steel strengthened by aging at appropriate temperature for sufficient duration. Precipitation of copper particles in the martensitic matrix during aging causes coherency strains which improves the mechanical properties, namely hardness and strength of the matrix. The contributions to X-ray diffraction (XRD) profile broadening due to coherency strains caused by precipitation and crystallite size changes due to aging are separated and quantified using the modified Williamson–Hall approach. The estimated normalized mean square strain and crystallite size are used to explain the observed changes in hardness. Microstructural changes observed in secondary electron images are in qualitative agreement with crystallite size changes estimated from XRD profile analysis. The precipitation kinetics in the age-hardening regime and overaged regime are studied from hardness changes and they follow the Avrami kinetics and Wilson’s model, respectively. In overaged condition, the hardness changes are linearly correlated to the tempering parameter (also known as Larson–Miller parameter). Similar linear variation is observed between the normalized mean square strain (determined from XRD line profile analysis) and the tempering parameter, in the incoherent regime which is beyond peak microstrain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U.K. Viswanathan, P.K.K. Nayar and R. Krishnan: Mater. Sci. Technol., 1989, vol. 5, pp. 346-49.

    Article  Google Scholar 

  2. M. Murayama, Y. Katayama and K. Hono: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 345-53.

    Article  Google Scholar 

  3. C.N. Hsiao, C.S. Chiou and J.R. Yang: Mater. Chem. Phys., 2002, vol. 74, pp. 134-42.

    Article  Google Scholar 

  4. M.K. Miller and M.G. Burke: OSTI Identifier-5744797, CONF-910808—2. http://www.osti.gov/scitech/biblio/5744797-characterization-copper-precipitation-ph-steel-combined-apfim-tem-study, 1991.

  5. F. Christien, R.L. Gall and G. Saindrenan: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2483-91.

    Article  Google Scholar 

  6. J. Wang, H. Zou, C. Li, R. Zuo, S. Qiu and B. Shen: J. Univ. Sci. Technol. Beijing, 2006, vol. 13, pp. 235-39.

    Article  Google Scholar 

  7. D.K. Bhattacharya, T. Jayakumar, V. Moorthy, S. Vaidyanathan and B. Raj: NDT & E Int., 1993, vol. 26, pp. 141-48.

    Article  Google Scholar 

  8. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22-31.

    Article  Google Scholar 

  9. B.E. Warren and B.L. Averbach: J. Appl. Phys., 1952, vol. 23, p. 497.

    Article  Google Scholar 

  10. D. Balzar and H. Ledbetter: J. Appl. Cryst., 1993, vol. 26, pp. 97-103.

    Article  Google Scholar 

  11. T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173-75.

    Article  Google Scholar 

  12. J.-G. Jung, M. Jung, S.-M. Lee, E. Shin, H.-C. Shin and Y.-K. Lee: J. Alloys Comp., 2013, vol. 553, pp. 299-307.

    Article  Google Scholar 

  13. H. Zhang, M.J. Gorley, K.B. Chong, M.E. Fitzpatrick, S.G. Roberts and P.S. Grant: J. Alloys Comp., 2014, vol. 582, pp. 769-73.

    Article  Google Scholar 

  14. O. Novelo-Peralta, G. González and G.A. Lara-Rodríguez: Mater. Charact., 2008, vol. 59, pp. 773-80.

    Article  Google Scholar 

  15. S. Mahadevan, T. Jayakumar, B.P.C. Rao, A. Kumar, K.V. Rajkumar and B. Raj: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1978-84.

    Article  Google Scholar 

  16. S.K. Rai, A. Kumar, V. Shankar, T. Jayakumar, K.B.S. Rao and B. Raj: Scripta Mater., 2004, vol. 51, pp. 59-63.

    Article  Google Scholar 

  17. T. Ungár and G. Tichy: Phys. Status Solidi A, 1999, vol. 171, pp. 425-34.

    Article  Google Scholar 

  18. M. Avrami, J. Chem. Phys., 1941, vol. 9, pp. 177-84.

    Article  Google Scholar 

  19. C.V. Robino, P.W. Hochanadel, G.R. Edwards and M.J. Cieslak: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 697-704.

    Article  Google Scholar 

  20. E.A. Wilson: Scripta Mater., 1997, vol. 36, pp. 1179-85.

    Article  Google Scholar 

  21. G.K. Wertheim, M.A. Butler, K.W. West and D.N.E. Buchanan: Rev. Sci. Instrum., 1974, vol. 45, pp. 1369-71.

    Article  Google Scholar 

  22. S.N. Dey, P. Chatterjee and S.P.S. Gupta: Acta Mater., 2003, vol. 51, pp. 4669-77.

    Article  Google Scholar 

  23. U.K. Viswanathan, S. Banerjee and R. Krishnan: Mater. Sci. Eng., A, 1988, vol. 104, pp. 181-89.

    Article  Google Scholar 

  24. V. Seetharaman, M. Sundararaman and R. Krishnan: Mater. Sci. Eng.,, 1981, vol. 47, pp. 1-11.

    Article  Google Scholar 

  25. P.W. Hochanadel, C.V. Robino, G.R. Edwards and M. Cieslak: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 789-98.

    Article  Google Scholar 

  26. G. Bruno, G. Schumacher, H.C. Pinto and C. Schulze: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 193-97.

    Article  Google Scholar 

  27. S.W. Thompson and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1573-88.

    Article  Google Scholar 

  28. T. Ungár: Adv. Eng. Mater., 2003, vol. 5, pp. 323-29.

    Article  Google Scholar 

  29. S.K. Ghosh, A. Haldar and P.P. Chattopadhyay: Mater. Sci. Eng., A, 2009, vol. 519, pp. 88-93.

    Article  Google Scholar 

  30. G.C. Hwang, S. Lee, J.Y. Yoo and W.Y. Choo: Mater. Sci. Eng. A, 1998, vol. 252, pp. 256–68.

    Article  Google Scholar 

  31. K. Huang, N. Wang, Y. Li and K. Marthinsen: Mater. Sci. Eng. A, 2014, vol. 601, pp. 86-96.

    Article  Google Scholar 

  32. K. Huang, Q. Zhao, Y. Li and K. Marthinsen: J. Mater. Proc. Technol., 2015, vol. 221, pp. 87-99.

    Article  Google Scholar 

  33. J.W. Martin: Micromechanisms in particle-hardened alloys, Cambridge University Press, New York, NY, 1980.

    Google Scholar 

  34. P. Rozenak: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 41-48.

    Article  Google Scholar 

  35. K.V. Rajkumar, R. Rajaraman, A. Kumar, G. Amarendra, T. Jayakumar, C.S. Sundar, B. Raj and K.K. Ray: Philos. Mag., 2009, vol. 89, p. 1597–610.

    Article  Google Scholar 

  36. Z. Guo, W. Sha and D. Li: Mater. Sci. Eng., A, 2004, vol. 373, p. 10–20.

    Article  Google Scholar 

  37. K.C. Russell and L.M. Brown: Acta Metall., 1972, vol. 20, pp. 969-74.

    Article  Google Scholar 

  38. T.Harry and D.J. Bacon: Acta Mater., 2002, vol. 50, pp. 195-208.

    Article  Google Scholar 

  39. M.E. Fine and D. Isheim: Scripta Mater., 2005, vol. 53, p. 115–18.

    Article  Google Scholar 

  40. H. Mirzadeh and A. Najafizadeh: Mater. Chem. Phys., 2009, vol. 116, pp. 119-24.

    Article  Google Scholar 

  41. V. Gerold and H. Haberkorn: Phys. Status Solidi, 1966, vol. 16, pp. 675-84.

    Article  Google Scholar 

  42. E. Hornbogen and R.C. Glenn: Trans. Met. Soc. of. AIME,, 1960, vol. 218, pp. 1064-70.

    Google Scholar 

  43. J.H. Hollomon and L.D. Jaffe: Trans. Amer. Inst. Min. Metall. Eng., 1945 vol. 162, pp. 223-49.

    Google Scholar 

  44. C. Gomes, A.L. Kaiser, J.P. Bas, A. Aissaoui and M. Piette: Revue de Métallurgie, 2010, vol. 107, pp. 293-302.

    Article  Google Scholar 

  45. E. Virtanen, C.J.V. Tyne, B.S. Levy and G. Brada: J. Mater. Process. Technol., 2013, vol. 213, pp. 1364-69.

    Article  Google Scholar 

  46. M. Vasudevan, S. Venkadesan, P.V. Sivaprasad and S.L. Mannan: J. Nucl. Mater., 1994, vol. 211, pp. 251-55.

    Article  Google Scholar 

  47. J.-H. Shin, J. Jeong and J.-W. Lee: Mat. Char., 2015, vol. 99, pp. 230-37.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Dr. K. Laha, Head, Mechanical Metallurgy Division, MMG for fruitful discussions on the tempering parameter. The authors would also like to thank Ms. Aarthi Ganesan, presently with Department of Physics, Jain University, Bangalore for her help and involvement during the X-ray diffraction measurements during her stay at this center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahadevan.

Additional information

Manuscript submitted March 5, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahadevan, S., Manojkumar, R., Jayakumar, T. et al. Precipitation-Induced Changes in Microstrain and Its Relation with Hardness and Tempering Parameter in 17-4 PH Stainless Steel. Metall Mater Trans A 47, 3109–3118 (2016). https://doi.org/10.1007/s11661-016-3440-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3440-8

Keywords

Navigation