Skip to main content
Log in

Grain size effects on NiTi shape memory alloy fatigue crack growth

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fatigue cracking in polycrystalline NiTi was investigated using a multiscale experimental framework for average grain sizes (GS) from 10 to 1500 nm for the first time. Macroscopic fatigue crack growth rates, measured by optical digital image correlation, were connected to microscopic crack opening and closing displacements, measured by scanning electron microscope DIC (SEM-DIC) using a high-precision external SEM scan controller. Among all grain sizes, the 1500 nm GS sample exhibited the slowest crack growth rate at the macroscale, and the largest crack opening level (stress intensity at first crack opening) and minimum crack opening displacements at the microscale. Smaller GS samples (10, 18, 42, and 80 nm) exhibited nonmonotonic trends in their fatigue performance, yet the correlation was strong between macroscale and microscale behaviors for each GS. The samples that exhibited the fastest crack growth rates (42 and 80 nm GS) showed a small crack opening level and the largest crack opening displacements. The irregular trends in fatigue performance across the nanocrystalline GS samples were consistent with nonmonotonic values in the elastic modulus reported previously, both of which may be related to the presence of residual martensite only evident in the small GS samples (10 and 18 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S.W. Robertson, A.R. Pelton, and R.O. Ritchie: Mechanical fatigue and fracture of Nitinol. Int. Mater. Rev. 57, 1 (2012).

    Article  CAS  Google Scholar 

  2. S.W. Robertson and R.O. Ritchie: In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects. Biomaterials 28, 700 (2007).

    Article  CAS  Google Scholar 

  3. P.C. Paris, M.P. Gomez, and W.E. Anderson: A rational analytic theory of fatigue. Trend Eng. 13, 9 (1961).

    Google Scholar 

  4. W. Elber: Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 2, 37 (1970).

    Article  Google Scholar 

  5. H. Sehitoglu: Crack opening and closure in fatigue. Eng. Fract. Mech. 21, 329 (1985).

    Article  Google Scholar 

  6. Q. Sun, A. Aslan, M. Li, and M. Chen: Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Sci. China: Technol. Sci. 57, 671 (2014).

    Article  CAS  Google Scholar 

  7. T. Waitz, K. Tsuchiya, T. Antretter, and F.D. Fischer: Phase transformations of nanocrystalline martensitic materials. MRS Bull. 34, 814 (2009).

    Article  CAS  Google Scholar 

  8. T. Duerig, A. Pelton, and D. Stöckel: An overview of nitinol medical applications. Mater. Sci. Eng., A 275, 149 (1999).

    Article  Google Scholar 

  9. J.A. Shaw and S. Kyriakides: Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43, 1243 (1995).

    Article  CAS  Google Scholar 

  10. J.A. Shaw and S. Kyriakides: On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater. 45, 683 (1997).

    Article  CAS  Google Scholar 

  11. Z.Q. Li and Q.P. Sun: The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. Int. J. Plast. 18, 1481 (2002).

    Article  CAS  Google Scholar 

  12. B-C. Chang, J.A. Shaw, and M.A. Iadicola: Thermodynamics of shape memory alloy wire: Modeling, experiments, and application. Continuum Mech. Thermodyn. 18, 83 (2006).

    Article  CAS  Google Scholar 

  13. M.P. Li and Q.P. Sun: Nanoscale phase transition behavior of shape memory alloys — closed form solution of 1D effective modelling. J. Mech. Phys. Solids 110, 21–37 (2018).

    Article  CAS  Google Scholar 

  14. A. Ahadi and Q. Sun: Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction. Acta Mater. 90, 272 (2015).

    Article  CAS  Google Scholar 

  15. M. Petersmann, W. Pranger, T. Waitz, and T. Antretter: An energy approach to determine the martensite morphology in nanocrystalline NiTi. Adv. Eng. Mater. 19, 1600684 (2017).

    Article  CAS  Google Scholar 

  16. A. Ahadi and Q. Sun: Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi. Scr. Mater. 113, 171 (2016).

    Article  CAS  Google Scholar 

  17. H. Yin, Y. He, Z. Moumni, and Q. Sun: Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy. Int. J. Fatigue 88, 166 (2016).

    Article  CAS  Google Scholar 

  18. T. Leitner, I. Sabirov, R. Pippan, and A. Hohenwarter: The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy. J. Mech. Behav. Biomed. Mater. 71 (2017).

  19. E. Prokofiev, J. Burow, J. Frenzel, D. Gunderov, G. Eggeler, and R. Valiev: Phase transformations and functional properties of NiTi alloy with ultrafine-grained structure. Mater. Sci. Forum 669, 1059 (2011).

    Google Scholar 

  20. K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie, and H.J. Maier: Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Mater. Sci. Eng., A 486, 389 (2008).

    Article  CAS  Google Scholar 

  21. ASTM Standard E647: Standard Test Method for Measurement of Fatigue Crack Growth Rates (ASTM International, West Conshohocken, Pennsylvania, 2013); pp. 1–49.

    Google Scholar 

  22. M.A. Sutton, J.J. Orteu, and H.W. Schreier: Image Correlation for Shape, Motion, and Deformation Measurements: Basic Concepts, Theory, and Applications (Springer, New York, 2009).

    Google Scholar 

  23. S.R. McNeill, W.H. Peters, and M.A. Sutton: Estimation of stress intensity factor by digital image correlation. Eng. Fract. Mech. 28, 101 (1987).

    Article  Google Scholar 

  24. M.A. Sutton, W. Zhao, S.R. McNeill, J.D. Helm, R.S. Piascik, and W.T. Riddell: Local crack closure measurements: Development of a measurement system using computer vision and a far-field microscope. Advances in fatigue crack closure measurement and analysis. J. ASTM Int. 2, 145 (1999).

    CAS  Google Scholar 

  25. S. O’Connor, D. Nowell, and K. Dragnevski: Measurement of fatigue crack deformation on the macro- and micro-scale: Uniform and non-uniform loading. Int. J. Fatigue 89, 66 (2016).

    Article  Google Scholar 

  26. M.D. Sangid, G.J. Pataky, H. Sehitoglu, R.G. Rateick, T. Niendorf, and H.J. Maier: Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth-microstructure relationship of nanocrystalline alloys. Acta Mater. 59, 7340 (2011).

    Article  CAS  Google Scholar 

  27. P.F.P. de Matos and D. Nowell: Experimental and numerical investigation of thickness effects in plasticity-induced fatigue crack closure. Int. J. Fatigue 31, 1795 (2009).

    Article  CAS  Google Scholar 

  28. J. Carroll, C. Efstathiou, J. Lambros, H. Sehitoglu, B. Hauber, S. Spottswood, and R. Chona: Investigation of fatigue crack closure using multiscale image correlation experiments. Eng. Fract. Mech. 76, 2384 (2009).

    Article  Google Scholar 

  29. M.C. Casperson, J.D. Carroll, J. Lambros, H. Sehitoglu, and R.H. Dodds: Investigation of thermal effects on fatigue crack closure using multiscale digital image correlation experiments. Int. J. Fatigue 61, 10 (2014).

    Article  CAS  Google Scholar 

  30. J.D. Carroll, W. Abuzaid, J. Lambros, and H. Sehitoglu: High resolution digital image correlation measurements of strain accumulation in fatigue crack growth. Int. J. Fatigue 57, 140 (2013).

    Article  CAS  Google Scholar 

  31. M.A. Sutton, N. Li, D. Garcia, N. Cornille, J.J. Orteu, S.R. McNeill, H.W. Schreier, X. Li, and A.P. Reynolds: Scanning electron microscopy for quantitative small and large deformation measurements, part II: Experimental validation for magnifications from 200 to 10,000. Exp. Mech. 47, 789–804 (2007).

    Article  Google Scholar 

  32. M.A. Sutton, N. Li, D.C. Joy, A.P. Reynolds, and X. Li: Scanning electron microscopy for quantitative small and large deformation measurements, part I: SEM imaging at magnifications from 200 to 10,000. Exp. Mech. 47 (2007).

  33. A. Kammers and S. Daly: Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp. Mech. 53, 1333 (2013).

    Article  Google Scholar 

  34. A. Kammers and S. Daly: Digital image correlation under scanning electron microscopy: Methodology and validation. Exp. Mech. 53, 1743 (2013).

    Article  Google Scholar 

  35. W.S. LePage, S.H. Daly, and J.A. Shaw: Cross polarization for improved digital image correlation. Exp. Mech. 56, 969 (2016).

    Article  Google Scholar 

  36. ASTM Standard E561: E561 Standard Test Method for KR Curve Determination (ASTM International, West Conshohocken, Pennsylvania, 2016); pp. 1–16.

    Google Scholar 

  37. A. Ahadi and Q. Sun: Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi. Appl. Phys. Lett. 103, 5 (2013).

    Article  CAS  Google Scholar 

  38. A. Ahadi and Q. Sun: Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater. 76, 186 (2014).

    Article  CAS  Google Scholar 

  39. W. LePage, J. Shaw, and S. Daly: Optimum paint sequence for speckle patterns in digital image correlation. Exp. Tech. 41, 557 (2017).

    Article  Google Scholar 

  40. Y. Wu, A. Ojha, L. Patriarca, and H. Sehitoglu: Fatigue crack growth fundamentals in shape memory alloys. Shape Mem. Superelastic. 1, 18 (2015).

    Article  Google Scholar 

  41. P. Reu and E. Jones: Distortion of full-field surface displacements from heat waves. In Conference Proceedings of the International Digital Imaging Correlation Society, M. Sutton and P.L. Reu, eds. (Springer International, Cham, Switzerland, 2016); pp. 1–2.

    Google Scholar 

  42. F. Hild and S. Roux: Evaluating Damage with Digital Image Correlation: B. From Physical to Mechanical Damage (Springer, New York, 2015); pp. 1277–1299, ISBN 9781461455899.

    Google Scholar 

  43. C.M. Cady, C. Liu, P.J. Rae, and M.L. Lovato: Thermal and loading dynamics of energetic materials. In Proceedings of the Society of Experimental Mechanics Annual Conference (Society of Experimental Mechanics, Bethel, Connecticu, 2009).

    Google Scholar 

  44. C. Liu, C.M. Cady, P.J. Rae, and M.L. Lovato: On the Quantitative Measurement of Fracture Toughness in High Explosive and Mock Materials (Los Alamos National Laboratories, Los Alamos, New Mexico, 2010); pp. 425–434.

    Google Scholar 

  45. L.W. Wang, K. Li, S. Sanusei, R. Ghorbani, F. Matta, and M.A. Sutton: Advancement of optical methods in experimental mechanics, volume 3. In Conference Proceedings of the Society for Experimental Mechanics Series, H. Jin, C. Sciammarella, S. Yoshida, and L. Lamberti, eds.; Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 3 (Springer International Publishing, Cham, Switzerland, 2014); pp. 289–297, ISBN 978-3-319-00767-0.

    Chapter  Google Scholar 

  46. S.M. Guo, M.A. Sutton, N. Li, X.D. Li, L.W. Wang, and S. Rajan: Measurement of local thermal deformations in heterogeneous microstructures via SEM imaging with digital image correlation. Exp. Mech. 57, 41 (2016).

    Article  Google Scholar 

  47. M. Sutton: Personal Communiciation, 3 May 2017.

  48. P. Sedlak, M. Frost, A. Kruisova, K. Hivrmanova, L. Heller, and P. Sittner: Simulations of mechanical response of superelastic NiTi helical spring and its relation to fatigue resistance. J. Mater. Eng. Perform. 23, 2591 (2014).

    Article  CAS  Google Scholar 

  49. A. Ahadi, Y. Matsushita, T. Sawaguchi, J. Schaffer, Q. Sun, and K. Tsuchiya: Origin of zero and negative thermal expansion in severely-deformed NiTi alloy. Acta Mater. 124, 79 (2017).

    Article  CAS  Google Scholar 

  50. Y. Li, J.Y. Li, M. Liu, Y.Y. Ren, F. Chen, G.C. Yao, and Q.S. Mei: Evolution of microstructure and property of NiTi alloy induced by cold rolling. J. Alloys Compd. 653, 156 (2015).

    Article  CAS  Google Scholar 

  51. M. Gupta, R.C. Alderliesten, and R. Benedictus: A review of T-stress and its effects in fracture mechanics. Eng. Fract. Mech. 134, 218 (2015).

    Article  Google Scholar 

  52. S.W. Robertson, X.Y. Gong, and R.O. Ritchie: Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol. J. Mater. Sci. 41, 621 (2006).

    Article  CAS  Google Scholar 

  53. S. Gao and S. Yi: Experimental study on the anisotropic behavior of textured NiTi pseudoelastic shape memory alloys. Mater. Sci. Eng., A 362, 107 (2003).

    Article  CAS  Google Scholar 

  54. M. Xia, P. Liu, and Q. Sun: Grain size effects on Young’s modulus and hardness of nanocrystalline NiTi shape memory alloy. Mater. Lett. 211, 352–355 (2018).

    Article  CAS  Google Scholar 

  55. K. Kim and S. Daly: Martensite strain memory in the shape memory alloy nickel–titanium under mechanical cycling. Exp. Mech. 51, 641 (2011).

    Article  CAS  Google Scholar 

  56. P. Feng and Q.P. Sun: Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force. J. Mech. Phys. Solids 54, 1568 (2006).

    Article  CAS  Google Scholar 

  57. S. Daly, G. Ravichandran, and K. Bhattacharya: Stress-induced martensitic phase transformation in thin sheets of Nitinol. Acta Mater. 55, 3593 (2007).

    Article  CAS  Google Scholar 

  58. J.F. Hallai and S. Kyriakides: Underlying material response for Luders-like instabilities. Int. J. Plast. 47, 1 (2013).

    Article  CAS  Google Scholar 

  59. S. Suresh and R.O. Ritchie: Near-Threshold Fatigue Crack Propagation: A Perspective on the Role of Crack Closure (Tech. Rep., Brown Univ., Providence, RI, USA; Div. of Engineering; Lawrence Berkeley Lab., CA, USA, 1983).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Dr. S. Daly gratefully acknowledges financial support from the National Science Foundation (CAREER Award, CMMI-1251891). Mr. W. LePage is grateful for financial support from the U.S. Department of Defense (Air Force Office of Scientific Research, National Defense Science and Engineering Graduate, or NDSEG, Fellowship program, 32 CFR 168a). Dr. A. Ahadi is grateful for financial support from the International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS) Japan, under grant number C1052. Dr. QP Sun is grateful for financial support from the Research Grant Council of Hong Kong through GRF Project No. 16214215. We sincerely thank Dr. J. Wayne Jones, Dr. Michael Thouless, and Dr. Alan Pelton for insightful discussions, Dr. Nakhiah Goulbourne for sharing fatigue testing equipment, Dr. Zhe Chen for assistance with SEM-DIC experiments, Dr. Jerry Zhongrui Li for assistance with X-ray diffraction measurements, Mr. Benjamin Marchi for developing the function to compute the coefficients of determination (R2) in Mathematica, Dr. Ryan Watkins for developing the DIC image overlay plotting routines, and the Michigan Center for Materials Characterization for instrument use and staff assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha H. Daly.

Additional information

This paper has been selected as an Invited Feature Paper.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LePage, W.S., Ahadi, A., Lenthe, W.C. et al. Grain size effects on NiTi shape memory alloy fatigue crack growth. Journal of Materials Research 33, 91–107 (2018). https://doi.org/10.1557/jmr.2017.395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.395

Navigation