Skip to main content

Advertisement

Log in

Co(OH)2 hollow nanoflowers as highly efficient electrocatalysts for oxygen evolution reaction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electrocatalytic water splitting for the production of H2 is increasingly becoming a significant method to mitigate the current energy crisis and environmental pollution. However, oxygen evolution reaction (OER), a slow four-electron progress, is the bottle neck of water splitting. Thus, developing new, low cost, and effective catalysts for OER is a research hotspot in material and energy resource fields. Therefore, the research of nonprecious, metal-based OER catalysts has been popular. In this work, it is validated that 3D hollow Co(OH)2 nanoflowers synthesized by a facile template-based strategy at room temperature are effective electrocatalysts for OER. The catalysts display high activity with a current density of 10 mA/cm2 at an overpotential of 310 mV and a small Tafel slope of 68.9 mV/dec in alkaline condition. It’s noteworthy that this material is stable for over 20 h of chronopotentiometry. This work offers a simple and promising way to prepare efficient and durable electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. W. Zhang, W.Z. Lai, and R. Cao: Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 3717 (2017).

    CAS  Google Scholar 

  2. J.R. Ran, J. Zhang, J.G. Yu, M. Jaroniec, and S.Z. Qiao: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787 (2014).

    CAS  Google Scholar 

  3. D. Gust, T.A. Moore, and A.L. Moore: Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890 (2009).

    CAS  Google Scholar 

  4. V. Balzani, A. Credi, and M. Venturi: Photochemical conversion of solar energy. ChemSusChem 1, 26 (2008).

    CAS  Google Scholar 

  5. C. Xie, Y.Y. Wang, K. Hu, L. Tao, X.B. Huang, J. Huo, and S.Y. Wang: In situ confined synthesis of molybdenum oxide decorated nickel–iron alloy nanosheets from MoO42− intercalated layered double hydroxides for the oxygen evolution reaction. J. Mater. Chem. A 5, 87 (2017).

    CAS  Google Scholar 

  6. Z.J. Liu, Z.H. Zhao, Y.Y. Wang, S. Dou, D.F. Yan, D.D. Liu, Z.H. Xia, and S.Y. Wang: In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 29, 1606207 (2017).

    Google Scholar 

  7. Y. Tachibana, L. Vayssieres, and J.R. Durrant: Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511 (2012).

    CAS  Google Scholar 

  8. J. Ohi: Hydrogen energy cycle: An overview. J. Mater. Res. 20, 3180 (2005).

    CAS  Google Scholar 

  9. C.G. Morales-Guio, L.A. Stern, and X.L. Hu: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555 (2014).

    CAS  Google Scholar 

  10. Y.M. Shi and B. Zhang: Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529 (2016).

    CAS  Google Scholar 

  11. R. Zhang, X.X. Wang, S.J. Yu, T. Wen, X.W. Zhu, F.X. Yang, X.N. Sun, X.K. Wang, and W.P. Hu: Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 29, 1605502 (2017).

    Google Scholar 

  12. J. Yin, Q.H. Fan, Y.X. Li, F.Y. Cheng, P.P. Zhou, P.X. Xi, and S.H. Sun: Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 138, 14546 (2016).

    CAS  Google Scholar 

  13. L. An, L. Huang, P.P. Zhou, J. Yin, H.Y. Liu, and P.X. Xi: A self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures. Adv. Funct. Mater. 25, 6814 (2015).

    CAS  Google Scholar 

  14. M.X. Chen, J. Qi, W. Zhang, and R. Cao: Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution. Chem. Commun. 53, 5507 (2017).

    CAS  Google Scholar 

  15. H.T. Lei, H.Y. Fang, Y.Z. Han, W.Z. Lai, X.F. Fu, and R. Cao: Reactivity and mechanism studies of hydrogen evolution catalyzed by copper corroles. ACS Catal. 5, 5145 (2015).

    CAS  Google Scholar 

  16. Y.Z. Han, H.Y. Fang, H.Z. Jing, H.L. Sun, H.T. Lei, W.Z. Lai, and R. Cao: Singly versus doubly reduced nickel porphyrins for proton reduction: Experimental and theoretical evidence for a homolytic hydrogen-evolution reaction. Angew. Chem., Int. Ed. 55, 5457 (2016).

    CAS  Google Scholar 

  17. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis: Solar water splitting cells. Chem. Rev. 110, 6446 (2010).

    CAS  Google Scholar 

  18. D.Y. Guo, J. Qi, W. Zhang, and R. Cao: Surface electrochemical modification of a nickel substrate to prepare a NiFe-based electrode for water oxidation. ChemSusChem 10, 394 (2017).

    CAS  Google Scholar 

  19. S-C. Lin, Y-F. Chiu, P-W. Wu, Y-F. Hsieh, and C-Y. Wu: Templated fabrication of nanostructured Ni brush for hydrogen evolution reaction. J. Mater. Res. 25, 2001 (2010).

    CAS  Google Scholar 

  20. S.H. Shen: Toward efficient solar water splitting over hematite photoelectrodes. J. Mater. Res. 29, 29 (2013).

    Google Scholar 

  21. Y. Zhang, Y. Xie, Y.T. Zhou, X.W. Wang, and K. Pan: Well dispersed Fe2N nanoparticles on surface of nitrogen-doped reduced graphite oxide for highly efficient electrochemical hydrogen evolution. J. Mater. Res. 32, 1770 (2017).

    CAS  Google Scholar 

  22. C.J. Gagliardi, B.C. Westlake, C.A. Kent, J.J. Paul, J.M. Papanikolas, and T.J. Meyer: Integrating proton coupled electron transfer (PCET) and excited states. Coord. Chem. Rev. 254, 2459 (2010).

    CAS  Google Scholar 

  23. M.X. Chen, Y.Z. Wu, Y.Z. Han, X.H. Lin, J.L. Sun, W. Zhang, and R. Cao: An iron-based film for highly efficient electrocatalytic oxygen evolution from neutral aqueous solution. ACS Appl. Mater. Interfaces 7, 21852 (2015).

    CAS  Google Scholar 

  24. R. Cao, W.Z. Lai, and P.W. Du: Catalytic water oxidation at single metal sites. Energy Environ. Sci. 5, 8134 (2012).

    CAS  Google Scholar 

  25. Y.Z. Wu, M.X. Chen, Y.Z. Han, H.X. Luo, X.J. Su, M.T. Zhang, X.H. Lin, J.L. Sun, L. Wang, L. Deng, W. Zhang, and R. Cao: Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution. Angew. Chem., Int. Ed. 54, 4870 (2015).

    CAS  Google Scholar 

  26. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, and D.G. Nocera: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474 (2010).

    CAS  Google Scholar 

  27. Y. Lee, J. Suntivich, K.J. May, E.E. Perry, and Y. Shao-Horn: Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399 (2012).

    CAS  Google Scholar 

  28. D.F. Yan, Y.X. Li, J. Huo, R. Chen, L.M. Dai, and S.Y. Wang: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29, 1606459 (2017).

    Google Scholar 

  29. S. Chen and S.Z. Qiao: Hierarchically porous nitrogen-doped graphene–NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 7, 10190 (2013).

    CAS  Google Scholar 

  30. G.S. Hutchings, Y. Zhang, J. Li, B.T. Yonemoto, X.G. Zhou, K.K. Zhu, and F. Jiao: In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 137, 4223 (2015).

    CAS  Google Scholar 

  31. J. Kim, J.S. Kim, H. Baik, K. Kang, and K. Lee: Porous β-MnO2 nanoplates derived from MnCO3 nanoplates as highly efficient electrocatalysts toward oxygen evolution reaction. RSC Adv. 6, 26535 (2016).

    CAS  Google Scholar 

  32. J. Qi, W. Zhang, R.J. Xiang, K.Q. Liu, H.Y. Wang, M.X. Chen, Y.Z. Han, and R. Cao: Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2, 1500199 (2015).

    Google Scholar 

  33. C.H. Kuo, I.M. Mosa, A.S. Poyraz, S. Biswas, A.M. E-Sawy, W.Q. Song, Z. Luo, S.Y. Chen, J.F. Rusling, J. He, and S.L. Suib: Robust mesoporous manganese oxide catalysts for water oxidation. ACS Catal. 5, 1693 (2015).

    CAS  Google Scholar 

  34. K. Fominykh, J.M. Feckl, J. Sicklinger, M. Doblinger, S. Bocklein, J. Ziegler, L. Peter, J. Rathousky, E.W. Scheidt, T. Bein, and D. Fattakhova-Rohlfing: Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv. Funct. Mater. 24, 3123 (2014).

    CAS  Google Scholar 

  35. R.D. Smith, M.S. Prevot, R.D. Fagan, S. Trudel, and C.P. Berlinguette: Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580 (2013).

    CAS  Google Scholar 

  36. L. Kuai, J. Geng, C.Y. Chen, E.J. Kan, Y.D. Liu, Q. Wang, and B.Y. Geng: A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem., Int. Ed. 53, 7547 (2014).

    CAS  Google Scholar 

  37. H.T. Wang, H.W. Lee, Y. Deng, Z.Y. Lu, P.C. Hsu, Y.Y. Liu, D.C. Lin, and Y. Cui: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015).

    CAS  Google Scholar 

  38. S. Jung, C.C.L. McCrory, I.M. Ferrer, J.C. Peters, and T.F. Jaramillo: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 4, 3068 (2016).

    CAS  Google Scholar 

  39. G.Q. Han, Y.R. Liu, W.H. Hu, B. Dong, X. Li, X. Shang, Y.M. Chai, Y.Q. Liu, and C.G. Liu: Crystallographic structure and morphology transformation of MnO2 nanorods as efficient electrocatalysts for oxygen evolution reaction. J. Electrochem. Soc. 163, H67 (2015).

    Google Scholar 

  40. W. Zhang, J. Qi, K.Q. Liu, and R. Cao: A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation. Adv. Energy Mater. 6, 1502489 (2016).

    Google Scholar 

  41. W. Zhang, Y.Z. Wu, J. Qi, M.X. Chen, and R. Cao: A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 7, 1602547 (2017).

    Google Scholar 

  42. M.R. Gao, W.C. Sheng, Z.B. Zhuang, Q.R. Fang, S. Gu, J. Jiang, and Y.S. Yan: Efficient water oxidation using nanostructured α-nickel–hydroxide as an electrocatalyst. J. Am. Chem. Soc. 136, 7077 (2014).

    CAS  Google Scholar 

  43. M.W. Louie and A.T. Bell: An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329 (2013).

    CAS  Google Scholar 

  44. L. Trotochaud, S.L. Young, J.K. Ranney, and S.W. Boettcher: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744 (2014).

    CAS  Google Scholar 

  45. D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.J. Cheng, D. Sokaras, T.C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Norskov, A. Nilsson, and A.T. Bell: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305 (2015).

    CAS  Google Scholar 

  46. P.F. Liu, S. Yang, B. Zhang, and H.G. Yang: Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting. ACS Appl. Mater. Interfaces 8, 34474 (2016).

    CAS  Google Scholar 

  47. F. Song and X.L. Hu: Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 136, 16481 (2014).

    CAS  Google Scholar 

  48. Y. Zhang, B. Cui, C.S. Zhao, H. Lin, and J.B. Li: Co–Ni layered double hydroxides for water oxidation in neutral electrolyte. Phys. Chem. Chem. Phys. 15, 7363 (2013).

    CAS  Google Scholar 

  49. C. Zhang, M.F. Shao, L. Zhou, Z.H. Li, K.M. Xiao, and M. Wei: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction. ACS Appl. Mater. Interfaces 8, 33697 (2016).

    CAS  Google Scholar 

  50. Y.Y. Wang, Y.Q. Zhang, Z.J. Liu, C. Xie, S. Feng, D.D. Liu, M.F. Shao, and S.Y. Wang: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 56, 5867 (2017).

    CAS  Google Scholar 

  51. R. Liu, Y.Y. Wang, D.D. Liu, Y.Q. Zou, and S.Y. Wang: Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 29, 1701546 (2017).

    Google Scholar 

  52. J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R.H. Dong, S.H. Liu, X.D. Zhuang, and X.L. Feng: Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 55, 6702 (2016).

    CAS  Google Scholar 

  53. G.F. Chen, T.Y. Ma, Z.Q. Liu, N. Li, Y.Z. Su, K. Davey, and S.Z. Qiao: Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 26, 3314 (2016).

    CAS  Google Scholar 

  54. T.T. Liu, Y.H. Liang, Q. Liu, X.P. Sun, Y.Q. He, and A.M. Asiri: Electrodeposition of cobalt–sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochem. Commun. 60, 92 (2015).

    CAS  Google Scholar 

  55. W.J. Zhou, X.J. Wu, X.H. Cao, X. Huang, C.L. Tan, J. Tian, H. Liu, J.Y. Wang, and H. Zhang: Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 6, 2921 (2013).

    CAS  Google Scholar 

  56. Z. Gao, J. Qi, M.X. Chen, W. Zhang, and R. Cao: An electrodeposited NiSe for electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution. Electrochim. Acta 224, 412 (2017).

    CAS  Google Scholar 

  57. D.S. Kong, H.T. Wang, Z.Y. Lu, and Y. Cui: CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136, 4897 (2014).

    CAS  Google Scholar 

  58. A.T. Swesi, J. Masud, and M. Nath: Enhancing electrocatalytic activity of bifunctional Ni3Se2 for overall water splitting through etching-induced surface nanostructuring. J. Mater. Res. 31, 2888 (2016).

    CAS  Google Scholar 

  59. Y.W. Liu, H. Cheng, M.J. Lyu, S.J. Fan, Q.H. Liu, W.S. Zhang, Y.D. Zhi, C.M. Wang, C. Xiao, S.Q. Wei, B.J. Ye, and Y. Xie: Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136, 15670 (2014).

    CAS  Google Scholar 

  60. R. Xu, R. Wu, Y.M. Shi, J.F. Zhang, and B. Zhang: Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy 24, 103 (2016).

    CAS  Google Scholar 

  61. C. Tang, N.Y. Cheng, Z.H. Pu, W. Xing, and X.P. Sun: NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 54, 9351 (2015).

    CAS  Google Scholar 

  62. A.J. Esswein, Y. Surendranath, S.Y. Reece, and D.G. Nocera: Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 4, 499 (2011).

    CAS  Google Scholar 

  63. J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z.Y. Sun, C. Somsen, M. Muhler, and W. Schuhmann: Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 6, 1502313 (2016).

    Google Scholar 

  64. Y.J. Tang, C.H. Liu, W. Huang, X.L. Wang, L.Z. Dong, S.L. Li, and Y.Q. Lan: Bimetallic carbides-based nanocomposite as superior electrocatalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces 9, 16977 (2017).

    CAS  Google Scholar 

  65. P.Z. Chen, K. Xu, Z.W. Fang, Y. Tong, J.C. Wu, X.L. Lu, X. Peng, H. Ding, C.Z. Wu, and Y. Xie: Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 54, 14710 (2015).

    CAS  Google Scholar 

  66. K. Xu, P.Z. Chen, X.L. Li, Y. Tong, H. Ding, X.J. Wu, W.S. Chu, Z.M. Peng, C.Z. Wu, and Y. Xie: Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 137, 4119 (2015).

    CAS  Google Scholar 

  67. D. Li, H. Baydoun, B. Kulikowski, and S.L. Brock: Boosting the catalytic performance of iron phosphide nanorods for the oxygen evolution reaction by incorporation of manganese. Chem. Mater. 29, 3048 (2017).

    CAS  Google Scholar 

  68. M.J. Liu and J.H. Li: Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl. Mater. Interfaces 8, 2158 (2016).

    CAS  Google Scholar 

  69. C.G. Read, J.F. Callejas, C.F. Holder, and R.E. Schaak: General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Appl. Mater. Interfaces 8, 12798 (2016).

    CAS  Google Scholar 

  70. S.T. Wei, K. Qi, Z. Jin, J.S. Cao, W.T. Zheng, H. Chen, and X.Q. Cui: One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting. ACS Omega 1, 1367 (2016).

    CAS  Google Scholar 

  71. X.G. Wang, W. Li, D.H. Xiong, and L.F. Liu: Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. J. Mater. Chem. A 4, 5639 (2016).

    CAS  Google Scholar 

  72. X.Y. Yu, Y. Feng, B.Y. Guan, X.W. Lou, and U. Paik: Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ. Sci. 9, 1246 (2016).

    CAS  Google Scholar 

  73. E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, and R.E. Schaak: Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267 (2013).

    CAS  Google Scholar 

  74. D. Li, H. Baydoun, C.N. Verani, and S.L. Brock: Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138, 4006 (2016).

    CAS  Google Scholar 

  75. G. Zhang, G.C. Wang, Y. Liu, H.J. Liu, J.H. Qu, and J.H. Li: Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 138, 14686 (2016).

    CAS  Google Scholar 

  76. M. Ledendecker, S. Krick Calderon, C. Papp, H.P. Steinruck, M. Antonietti, and M. Shalom: The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 54, 12361 (2015).

    CAS  Google Scholar 

  77. W.Z. Lai, R. Cao, G. Dong, S. Shaik, J.N. Yao, and H. Chen: Why is cobalt the best transition metal in transition-metal hangman corroles for O–O bond formation during water oxidation? J. Phys. Chem. Lett. 3, 2315 (2012).

    CAS  Google Scholar 

  78. V. Artero, M. Chavarot-Kerlidou, and M. Fontecave: Splitting water with cobalt. Angew. Chem., Int. Ed. 50, 7238 (2011).

    CAS  Google Scholar 

  79. S.H. Wan, J. Qi, W. Zhang, W.N. Wang, S.K. Zhang, K.Q. Liu, H.Q. Zheng, J.L. Sun, S.Y. Wang, and R. Cao: Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 29, 1700286 (2017).

    Google Scholar 

  80. D.Y. Guo, F.F. Chen, W. Zhang, and R. Cao: Phase-transfer synthesis of α-Co(OH)2 and its conversion to CoO for efficient electrocatalytic water oxidation. Sci. Bull. 62, 626 (2017).

    CAS  Google Scholar 

  81. J.H. Wang, W. Cui, Q. Liu, Z.C. Xing, A.M. Asiri, and X.P. Sun: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28, 215 (2016).

    CAS  Google Scholar 

  82. S. Dou, C.L. Dong, Z. Hu, Y.C. Huang, J.l. Chen, L. Tao, D.F. Yan, D.W. Chen, S.H. Shen, S.L. Chou, and S.Y. Wang: Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 27, 1702546 (2017).

    Google Scholar 

  83. R.M. Liu, Z.X. Jiang, J.P. Ma, L. Ni, X.Y. Sun, Y. Liu, H.X. Chen, and Q. Liu: Al3+-induced growth of α-Co(OH)2 nanoplates as high-capacity supercapacitors and water oxidation electrocatalysts. RSC Adv. 7, 3783 (2017).

    CAS  Google Scholar 

  84. L. Wang, Z.H. Dong, Z.G. Wang, F.X. Zhang, and J. Jin: Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: Understanding the effect of interlayer space on electrochemical activity. Adv. Funct. Mater. 23, 2758 (2013).

    CAS  Google Scholar 

  85. Y.M. Jiang, X. Li, T.X. Wang, and C.M. Wang: Enhanced electrocatalytic oxygen evolution of α-Co(OH)2 nanosheets on carbon nanotube/polyimide films. Nanoscale 8, 9667 (2016).

    CAS  Google Scholar 

  86. P.F. Liu, S. Yang, L.R. Zheng, B. Zhang, and H.G. Yang: Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. J. Mater. Chem. A 4, 9578 (2016).

    CAS  Google Scholar 

  87. M.A. Sayeed, T. Herd, and A.P. O’Mullane: Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction. J. Mater. Chem. A 4, 991 (2016).

    CAS  Google Scholar 

  88. J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, and Y.D. Li: Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867 (2006).

    CAS  Google Scholar 

  89. J.W. Nai, Y. Tian, X. Guan, and L. Guo: Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 135, 16082 (2013).

    CAS  Google Scholar 

  90. Y.P. Zhu, T.Y. Ma, M. Jaroniec, and S.Z. Qiao: Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem., Int. Ed. 56, 1324 (2017).

    CAS  Google Scholar 

  91. H.B. Li, M.H. Yu, X.H. Lu, P. Liu, Y. Liang, J. Xiao, Y.X. Tong, and G.W. Yang: Amorphous cobalt hydroxide with superior pseudocapacitive performance. ACS Appl. Mater. Interfaces 6, 745 (2014).

    CAS  Google Scholar 

  92. A. Bergmann, E. Martinez-Moreno, D. Teschner, P. Chernev, M. Gliech, J.F. de Araujo, T. Reier, H. Dau, and P. Strasser: Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015).

    CAS  Google Scholar 

  93. Z.P. Liu, R.Z. Ma, M. Osada, K. Takada, and T. Sasaki: Selective and controlled synthesis of α- and β-cobalt hydroxides in highly developed hexagonal platelets. J. Am. Chem. Soc. 127, 13869 (2005).

    CAS  Google Scholar 

  94. J. Yang, H.W. Liu, W.N. Martens, and R.L. Frost: Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114, 111 (2010).

    CAS  Google Scholar 

  95. T. Xue, X. Wang, and J.M. Lee: Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor. J. Power Sources 201, 382 (2012).

    CAS  Google Scholar 

  96. Y.Q. Lai, Y. Li, L.X. Jiang, W. Xu, X.J. Lv, J. Li, and Y.X. Liu: Electrochemical behaviors of co-deposited Pb/Pb–MnO2 composite anode in sulfuric acid solution—Tafel and EIS investigations. J. Electroanal. Chem. 671, 16 (2012).

    CAS  Google Scholar 

  97. H.Y. Jin, S.J. Mao, G.P. Zhan, F. Xu, X.B. Bao, and Y. Wang: Fe incorporated α-Co(OH)2 nanosheets with remarkably improved activity towards the oxygen evolution reaction. J. Mater. Chem. A 5, 1078 (2017).

    CAS  Google Scholar 

  98. F. Song and X.L. Hu: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (21101170, 21503126, and 21573139), the Fundamental Research Funds for the Central Universities (GK201603037), the Starting Research Funds of Shaanxi Normal University, and the “Thousand Talents Program” of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Rui Cao.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Guo, D., Zhang, W. et al. Co(OH)2 hollow nanoflowers as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Materials Research 33, 568–580 (2018). https://doi.org/10.1557/jmr.2017.390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.390

Navigation