Skip to main content
Log in

Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This article provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if the same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).

    Article  CAS  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  CAS  Google Scholar 

  4. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang: High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer International Publishing, Cham, 2016); p. 516.

    Book  Google Scholar 

  5. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  6. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).

    Article  CAS  Google Scholar 

  7. Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, and M.C. Gao: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 4, 57 (2014).

    Article  CAS  Google Scholar 

  8. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

    Article  CAS  Google Scholar 

  9. S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong: Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 321, 120 (2003).

    Article  CAS  Google Scholar 

  10. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang: Design of high entropy alloys: A single-parameter thermodynamic rule. Scr. Mater. 104, 53 (2015).

    Article  CAS  Google Scholar 

  11. Y.F. Ye, C.T. Liu, and Y. Yang: A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 94, 152 (2015).

    Article  CAS  Google Scholar 

  12. Z.J. Wang, W.F. Qiu, Y. Yang, and C.T. Liu: Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics 64, 63 (2015).

    Article  CAS  Google Scholar 

  13. D.J.M. King, S.C. Middleburgh, A.G. McGregor, and M.B. Cortie: Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172 (2016).

    Article  CAS  Google Scholar 

  14. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).

    Google Scholar 

  15. O.N. Senkov and D.B. Miracle: A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. 658, 603 (2016).

    Article  CAS  Google Scholar 

  16. M.G. Poletti and L. Battezzati: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297 (2014).

    Article  CAS  Google Scholar 

  17. I. Toda-Caraballo and P.E.J. Rivera-Diaz-del-Castillo: A criterion for the formation of high entropy alloys based on lattice distortion. Intermetallics 71, 76 (2016).

    Article  CAS  Google Scholar 

  18. S. Guo: Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 31, 1223 (2015).

    Article  CAS  Google Scholar 

  19. M.C. Gao, C.S. Carney, Ö.N. Doğan, P.D. Jablonksi, J.A. Hawk, and D.E. Alman: Design of refractory high-entropy alloys. JOM 67, 2653 (2015).

    Article  CAS  Google Scholar 

  20. B. Zhang, M.C. Gao, Y. Zhang, and S.M. Guo: Senary refractory high-entropy alloy CrxMoNbTaVW. CALPHAD 51, 193 (2015).

    Article  CAS  Google Scholar 

  21. M.C. Gao, B. Zhang, S. Yang, and S.M. Guo: Senary refractory high-entropy alloy HfNbTaTiVZr. Metall. Mater. Trans. A 47, 3333 (2016).

    Article  CAS  Google Scholar 

  22. H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, and Y. Zhang: NbTaV–(Ti,W) refractory high entropy alloys. Mater. Sci. Eng., A 674, 203 (2016).

    Article  CAS  Google Scholar 

  23. H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, and H.F. Zhou: MoNbTaV medium-entropy alloy. Entropy 18, 189 (2016).

    Article  CAS  Google Scholar 

  24. C. Zhang, F. Zhang, S.L. Chen, and W.S. Cao: Computational thermodynamics aided high-entropy alloy design. JOM 64, 839 (2012).

    Article  CAS  Google Scholar 

  25. M.C. Gao and D.E. Alman: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).

    Article  CAS  Google Scholar 

  26. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner: An understanding of high entropy alloys from phase diagram calculations. CALPHAD 45, 1 (2014).

    Article  CAS  Google Scholar 

  27. O.N. Senkov, J.D. Miller, D.B. Miracles, and C. Woodward: Accelerated exploration of multi-principal element alloys for structural applications. CALPHAD 50, 32 (2015).

    Article  CAS  Google Scholar 

  28. C. Zhang and M.C. Gao: CALPHAD modeling of high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 399.

    Chapter  Google Scholar 

  29. B. Zhang, M.C. Gao, Y. Zhang, S. Yang, and S.M. Guo: Senary refractory high-entropy alloy MoNbTaTiVW. Mater. Sci. Technol. 31, 1207 (2015).

    Article  CAS  Google Scholar 

  30. M.C. Gao: Design of high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 369.

    Chapter  Google Scholar 

  31. M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk: High-entropy alloys in hexagonal close packed structure. Metall. Mater. Trans. A 47, 3322 (2016).

    Article  CAS  Google Scholar 

  32. M. Widom, W.P. Huhn, S. Maiti, and W. Steurer: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196 (2014).

    Article  CAS  Google Scholar 

  33. M. Widom: Prediction of structure and phase transformations. In High-Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 267.

    Chapter  Google Scholar 

  34. F.Y. Tian, L. Delczeg, N.X. Chen, L.K. Varga, J. Shen, and L. Vitos: Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).

    Article  CAS  Google Scholar 

  35. F.Y. Tian, Y. Wang, D.L. Irving, and L. Vitos: Applications of coherent potential approximation to HEAs. In High-Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 299.

    Chapter  Google Scholar 

  36. M.C. Gao, C. Niu, C. Jiang, and D.L. Irving: Applications of special quasi-random structures to high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, eds. (Springer International Publishing, Cham, 2016); p. 333.

    Chapter  Google Scholar 

  37. D. Ma, B. Grabowski, F. Kormann, J. Neugebauer, and D. Raabe: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).

    Article  CAS  Google Scholar 

  38. H. Bei: Multi-component solid solution alloys having high mixing entropy. USPC, No. US20130108502 A1, UT-BATTELLE, LLC, Oak Ridge, TN, Knoxville, 2013.

    Google Scholar 

  39. O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).

    Article  CAS  Google Scholar 

  40. G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  41. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  42. P.E. Blochl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  CAS  Google Scholar 

  43. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  44. S.H. Wei, L.G. Ferreira, J.E. Bernard, and A. Zunger: Electronic properties of random alloys: Special quasirandom structures. Phys. Rev. B 42, 9622 (1990).

    Article  CAS  Google Scholar 

  45. A. Zunger, S.H. Wei, L.G. Ferreira, and J.E. Bernard: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).

    Article  CAS  Google Scholar 

  46. H.J. Monkhorst and J.D. Pack: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  47. W.P. Huhn and M. Widom: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W. JOM 65, 1772 (2013).

    Article  CAS  Google Scholar 

  48. M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, and J.A. Hawk: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. (2017). (in press). doi: https://doi.org/10.1016/j.cossms.2017.08.001.

  49. H. Ackermann, G. Inden, and R. Kikuchi: Tetrahedron approximation of the cluster variation method for bcc alloys. Acta Metall. 37, 1 (1989).

    Article  CAS  Google Scholar 

  50. B. Sundman, B. Jansson, and J.O. Andersson: The Thermo-Calc databank system. CALPHAD 9, 153 (1985).

    Article  CAS  Google Scholar 

  51. G.H. Gulliver: The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met. 9, 120 (1913).

    Google Scholar 

  52. E. Scheil: Comments on the layer crystal formation. Z. Metallkd. 34, 70 (1942).

    Google Scholar 

  53. M.S. Lucas, L. Mauger, J.A. Munoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).

    Article  CAS  Google Scholar 

  54. M.S. Lucas, D. Belyea, C. Bauer, N. Bryant, E. Michel, Z. Turgut, S.O. Leontsev, J. Horwath, S.L. Semiatin, M.E. McHenry, and C.W. Miller: Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys. J. Appl. Phys. 113, 17A923 (2013).

    Article  CAS  Google Scholar 

  55. Y. Le Page and P. Saxe: Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 65, 104104 (2002).

    Article  CAS  Google Scholar 

  56. M.C. Gao, Y. Suzuki, H. Schweiger, Ö.N. Doğan, J. Hawk, and M. Widom: Phase stability and elastic properties of Cr–V alloys. J. Phys.: Condens. Matter 25, 075402 (2013).

    CAS  Google Scholar 

  57. M. Born and K. Huang: Dynamical Theory of Crystal Lattices, 1st ed. (Clarendon Press, Oxford, 1954).

    Google Scholar 

  58. B. Feng and M. Widom: Elastic stability and lattice distortion of refractory high entropy alloys. Mater. Chem. Phys. (2017). (in press). doi: https://doi.org/10.1016/j.matchemphys.2017.06.038.

  59. L.Y. Tian, G. Wang, J.S. Harris, D.L. Irving, J. Zhao, and L. Vitos: Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 114, 243 (2017).

    Article  CAS  Google Scholar 

  60. H.J. Ge, F.Y. Tian, and Y. Wang: Elastic and thermal properties of refractory high-entropy alloys from first-principles calculations. Comput. Mater. Sci. 128, 185 (2017).

    Article  CAS  Google Scholar 

  61. F.Y. Tian, L.K. Varga, J. Shen, and L. Vitos: Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Comput. Mater. Sci. 111, 350 (2016).

    Article  CAS  Google Scholar 

  62. Z. Wang, S. Guo, and C.T. Liu: Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 66, 1966 (2014).

    Article  Google Scholar 

  63. B.L. Zhang, Y. Mu, M.C. Gao, W.J. Meng, and S.M. Guo: On single-phase status and segregation of an as-solidified septenary refractory high entropy alloy. MRS Commun. 7, 78 (2017).

    Article  CAS  Google Scholar 

  64. S.W. Sohn, Y.H. Liu, J.B. Liu, P. Gong, S. Prades-Rodel, A. Blatter, B.E. Scanley, C.C. Broadbridge, and J. Schroers: Noble metal high entropy alloys. Scr. Mater. 126, 29 (2017).

    Article  CAS  Google Scholar 

  65. B. Fultz, L. Anthony, J.L. Robertson, R.M. Nicklow, S. Spooner, and M. Mostoller: Phonon modes and vibrational entropy of mixing in Fe–Cr. Phys. Rev. B 52, 3280 (1995).

    Article  CAS  Google Scholar 

  66. B. Fultz: Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247 (2010).

    Article  CAS  Google Scholar 

  67. J.A. Munoz, M.S. Lucas, O. Delaire, M.L. Winterrose, L. Mauger, C.W. Li, A.O. Sheets, M.B. Stone, D.L. Abernathy, Y. Xiao, P. Chow, and B. Fultz: Positive vibrational entropy of chemical ordering in FeV. Phys. Rev. Lett. 107, 115501 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out in support of the Cross-Cutting Technologies Program at the National Energy Technology Laboratory (NETL), managed by Robert Romanosky (Technology Manager). The Research was executed through NETL’s Research and Innovation Center’s Innovative Process Technologies (IPT) Field Work Proposal. Research performed by AECOM Staff was conducted under the RES contract DE-FE-0004000. L.Z. Ouyang acknowledges support by DE-FE-0011549 and DE-NA0002630. Work at Carnegie Mellon was supported under grant DE-SC0014506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Gao.

Additional information

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M.C., Gao, P., Hawk, J.A. et al. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. Journal of Materials Research 32, 3627–3641 (2017). https://doi.org/10.1557/jmr.2017.366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.366

Navigation