Skip to main content
Log in

Synthesis of CuO nanostructures on zeolite-Y and investigation of their CO2 adsorption properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Copper(II) oxide (CuO) nanoparticles (NPs) in two different morphologies, spiky and spherical, were synthesized on zeolite-Y by a modified impregnation method, and their CO2 adsorbing capabilities were investigated under standard conditions (1 atm and 298 K). The properties and CO2 adsorption performances of the hybrid systems were characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, X-ray photoelectron spectroscopy, atomic absorption spectroscopy, and Brunauer-Emmett-Teller analyses. The microscopy analyses showed that spiky nanostructures have a length of approximately 450 nm, and the spherical ones are approximately 18 nm in diameter. Quantitative analyses demonstrated that CuO NPs in both morphologies on the zeolite surface led to an improvement in their CO2 adsorption capacities. This enhancement is mainly due to the higher CO2 chemisorption capability of CuO NP-zeolite systems compared to that of bare zeolite. The presence of spiky and spherical CuO NPs on the zeolite surface resulted in increases of 112% and 86% in the amount of chemisorbed CO2 on the zeolite-Y surfaces, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S.A. Rackley: Carbon Capture and Storage (Butterworth-Heinemann/Elsevier, Amsterdam, the Netherlands, 2010).

    Book  Google Scholar 

  2. A. Kaithwas, M. Prasad, A. Kulshreshtha, and S. Verma: Industrial wastes derived solid adsorbents for CO2 capture: A mini review. Chem. Eng. Res. Des. 90, 1632 (2012).

    Article  CAS  Google Scholar 

  3. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava: Advances in CO2 capture technology. Int. J. Greenhouse Gas Control 2, 9 (2008).

    Article  CAS  Google Scholar 

  4. A. Tekin, O. Karalti, and F. Karadas: A metal dicyanamide cluster with high CO2/N2 selectivity. Microporous Mesoporous Mater. 228, 153 (2016).

    Article  CAS  Google Scholar 

  5. J. Zhang, R. Singh, and P.A. Webley: Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater. 111, 478 (2008).

    Article  CAS  Google Scholar 

  6. C. Schitco, M. Seifollahi Bazarjani, R. Riedel, and A. Gurlo: Ultramicroporous silicon nitride ceramics for CO2 capture. J. Mater. Res. 30, 2958 (2015).

    Article  CAS  Google Scholar 

  7. H. Deng, H. Yi, X. Tang, H. Liu, and X. Zhou: Interactive effect for simultaneous removal of SO2, NO, and CO2 in flue gas on ion exchanged zeolites. Ind. Eng. Chem. Res. 52, 6778 (2013).

    Article  CAS  Google Scholar 

  8. I. Othman Ali: Preparation and characterization of copper nanoparticles encapsulated inside ZSM-5 zeolite and NO adsorption. Mater. Sci. Eng., A 459, 294 (2007).

    Article  Google Scholar 

  9. C-H. Chiu, H-C. Hsi, and C-C. Lin: Control of mercury emissions from coal-combustion flue gases using CuCl2-modified zeolite and evaluating the cobenefit effects on SO2 and NO removal. Fuel Process. Technol. 126, 138 (2014).

    Article  CAS  Google Scholar 

  10. H.J. Freund and M.W. Roberts: Surface chemistry of carbon dioxide. Surf. Sci. Rep. 25, 225 (1996).

    Article  Google Scholar 

  11. W.N.R.W. Isahak, Z.A.C. Ramli, M.W. Ismail, K. Ismail, R.M. Yusop, M.W.M. Hisham, and M.A. Yarmo: Adsorption-desorption of CO2 on different type of copper oxides surfaces: Physical and chemical attractions studies. J. CO2 Util. 2, 8 (2013).

    Article  CAS  Google Scholar 

  12. H. Mat: Khairul Sozana Nor Kamarudin Hanapi Bin Hamdan: Zeolite as Natural Gas Adsorbents (Universiti Teknologi Malasia, Johar, Malaysia, 2007).

    Google Scholar 

  13. H. Jeon, Y.J. Min, S.H. Ahn, S-M. Hong, J-S. Shin, J.H. Kim, and K.B. Lee: Graft copolymer templated synthesis of mesoporous MgO/TiO2 mixed oxide nanoparticles and their CO2 adsorption capacities. Colloids Surf., A 414, 75 (2012).

    Article  CAS  Google Scholar 

  14. J. Baltrusaitis, J. Schuttlefield, E. Zeitler, and V.H. Grassian: Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem. Eng. J. 170, 471 (2011).

    Article  CAS  Google Scholar 

  15. A. Zukal, J. Pastva, and J. Čejka: MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption. Microporous Mesoporous Mater. 167, 44 (2013).

    Article  CAS  Google Scholar 

  16. B. Aziz, G. Zhao, and N. Hedin: Carbon dioxide sorbents with propylamine groups–silica functionalized with a fractional factorial design approach. Langmuir 27, 3822 (2011).

    Article  CAS  Google Scholar 

  17. V. Georgieva, C. Anfray, R. Retoux, V. Valtchev, S. Valable, and S. Mintova: Iron loaded EMT nanosized zeolite with high affinity towards CO2 and NO. Microporous Mesoporous Mater. 232, 256 (2016).

    Article  CAS  Google Scholar 

  18. E. Molyanyan, S. Aghamiri, M.R. Talaie, and N. Iraji: Experimental study of pure and mixtures of CO2 and CH4 adsorption on modified carbon nanotubes. Int. J. Environ. Sci. Technol. 13, 2001 (2016).

    Article  Google Scholar 

  19. D.P. Bezerra, F.W.M. Da Silva, P.A.S. De Moura, A.G.S. Sousa, R.S. Vieira, E. Rodriguez-Castellon, and D.C.S. Azevedo: CO2 adsorption in amine-grafted zeolite 13X. Appl. Surf. Sci. 314, 314 (2014).

    Article  CAS  Google Scholar 

  20. K.K. Han, Y. Zhou, Y. Chun, and J.H. Zhu: Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature. J. Hazard. Mater. 203–204, 341 (2012).

    Article  Google Scholar 

  21. B. Dou, Y. Song, Y. Liu, and C. Feng: High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor. J. Hazard. Mater. 183, 759 (2010).

    Article  CAS  Google Scholar 

  22. K. Phiwdang, S. Suphankij, W. Mekprasart, and W. Pecharapa: Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia 34, 740 (2013).

    Article  CAS  Google Scholar 

  23. M. Zahmakiran and S. Özkar: Preparation and characterization of zeolite framework stabilized cuprous oxide nanoparticles. Mater. Lett. 63, 1033 (2009).

    Article  CAS  Google Scholar 

  24. R. Shoja Razavi and M.R. Loghman-Estarki: Synthesis and characterizations of copper oxide nanoparticles within zeolite Y. J. Cluster Sci. 23, 1097 (2012).

    Article  CAS  Google Scholar 

  25. B.J. Kim, K.S. Cho, and S.J. Park: Copper oxide-decorated porous carbons for carbon dioxide adsorption behaviors. J. Colloid Interface Sci. 342, 575 (2010).

    Article  CAS  Google Scholar 

  26. M. Zahmakiran, F. Durap, and S. Özkar: Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane. Int. J. Hydrogen Energy 35, 187 (2010).

    Article  CAS  Google Scholar 

  27. J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, and X.Q. Xin: Preparation and characterization of CuO nanocrystals. J. Solid State Chem. 147, 516 (1999).

    Article  CAS  Google Scholar 

  28. W-T. Yao, S-H. Yu, Y. Zhou, J. Jiang, Q-S. Wu, L. Zhang, and J. Jiang: Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid−liquid phase arc discharge process. J. Phys. Chem. B 109, 14011 (2005).

    Article  CAS  Google Scholar 

  29. J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, and M.T. Czyzyk: Electronic structure of Cu2O and CuO. Phys. Rev. B 38, 11322 (1988).

    Article  CAS  Google Scholar 

  30. Y.C. Zhang, J.Y. Tang, G.L. Wang, M. Zhang, and X.Y. Hu: Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor. J. Cryst. Growth 294, 278 (2006).

    Article  CAS  Google Scholar 

  31. M. Parhizkar, S. Singh, P.K. Nayak, N. Kumar, K.P. Muthe, S.K. Gupta, R.S. Srinivasa, S.S. Talwar, and S.S. Major: Nanocrystalline CuO films prepared by pyrolysis of Cu-arachidate LB multilayers. Colloids Surf., A 257–258, 277 (2005).

    Article  Google Scholar 

  32. M. Scrocco: Satellite structure in the X-ray photoelectron spectra of CuO Cu2O. Chem. Phys. Lett. 63, 52 (1979).

    Article  CAS  Google Scholar 

  33. J. Baltrusaitis, A.J.H. Jensen, and V. Grassian: FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3. J. Phys. Chem. B 110, 12005 (2006).

    Article  CAS  Google Scholar 

  34. C. Su and D.L. Suarez: In situ infrared speciation of adsorbed carbonate on aluminum and iron oxides. Clays Clay Miner. 45, 814 (1997).

    Article  CAS  Google Scholar 

  35. T.L.P. Dantas, F.M.T. Luna, I.J. Silva, D.C.S. de Azevedo, C.A. Grande, A.E. Rodrigues, and R.F.P.M. Moreira: Carbon dioxide–nitrogen separation through adsorption on activated carbon in a fixed bed. Chem. Eng. J. 169, 11 (2011).

    Article  CAS  Google Scholar 

  36. W. Su, J. Zhang, Z. Feng, T. Chen, P. Ying, and C. Li: Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J. Phys. Chem. C 112, 7710 (2008).

    Article  CAS  Google Scholar 

  37. G.D. Pirngruber, P. Raybaud, Y. Belmabkhout, J. Čejka, A. Zukal, C.O. Arean, and P. Nachtigall: The role of the extra-framework cations in the adsorption of CO2 on faujasite Y. Phys. Chem. Chem. Phys. 12, 13534 (2010).

    Article  CAS  Google Scholar 

  38. D.R. Godhani, H.D. Nakum, D.K. Parmar, J.P. Mehta, and N.C. Desai: A hierarchical zeolite-Y hampered metallo-ligand complexes for selective oxidation: A mechanistic point of view. Microporous Mesoporous Mater. 235, 233 (2016).

    Article  CAS  Google Scholar 

  39. National Institute of Standards and Technology. Available at: http://webbook.nist.gov/chemistry/ (n.d.) (accessed July 14, 2017).

  40. J. Xie, M. Huang, and S. Kaliaguine: Characterization of basicity in alkali cation exchanged faujasite zeolites: An XPS study using chloroform as a probe molecule. Appl. Surf. Sci. 115, 157 (1997).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge Assoc. Prof. Okan Esenturk for guidance in FTIR measurements and data evaluation, Assoc. Prof. Gulay Ertas for discussions on XPS data, Prof. Jale Hacaloglu and Halil Ipek for access to TGA instrument and help on TPD measurements and Prof. Aysen Yilmaz for access to XRD instrument in METU Department of Chemistry. We also acknowledge the support from METU-BAP Project: BAP-07-02-2014-007-442.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emren Nalbant Esenturk.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boruban, C., Esenturk, E.N. Synthesis of CuO nanostructures on zeolite-Y and investigation of their CO2 adsorption properties. Journal of Materials Research 32, 3669–3678 (2017). https://doi.org/10.1557/jmr.2017.337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.337

Navigation