Skip to main content
Log in

Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium-tantalum based alloys can demonstrate a martensitic transformation well above 100 °C, which makes them attractive for shape memory applications at elevated temperatures. In addition, they provide for good workability and contain only reasonably priced constituents. The current study presents results from functional fatigue experiments on a binary Ti-25Ta high-temperature shape memory alloy. This material shows a martensitic transformation at about 350 °C along with a transformation strain of 2 pct at a bias stress of 100 MPa. The success of most of the envisaged applications will, however, hinge on the microstructural stability under thermomechanical loading. Thus, light and electron optical microscopy as well X-ray diffraction were used to uncover the mechanisms that dominate functional degradation in different temperature regimes. It is demonstrated the maximum test temperature is the key parameter that governs functional degradation in the thermomechanical fatigue tests. Specifically, ω-phase formation and local decomposition in Ti-rich and Ta-rich areas dominate when Tmax does not exceed ≈430 °C. As Tmax is increased, the detrimental phases start to dissolve and functional fatigue can be suppressed. However, when Tmax reaches ≈620 °C, structural fatigue sets in, and fatigue life is again deteriorated by oxygen-induced crack formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. K. Otsuka and X. Ren: Recent developments in the research of shape memory alloys. Intermetallics 7 (5), 511 (1999).

    Article  CAS  Google Scholar 

  2. J. Ma, I. Karaman, and R.D. Noebe: High temperature shape memory alloys. Int. Mater. Rev. 55 (5), 257 (2010).

    Article  CAS  Google Scholar 

  3. P.G. Lindquist and C.M. Wayman: Shape memory and transformation behavior of martensitic Ti–Pd–Ni and Ti–Pt–Ni alloys. In Engineering Aspects of Shape Memory Alloys, T.W. Duerig, K.N. Melton, D. Stöckel, and C.M. Wayman, eds. (Butterworth-Heinemann, London, Boston, Singapore, Sydney, Toronto, Wellington, 1990); p. 58.

    Chapter  Google Scholar 

  4. J. Van Humbeeck: High temperature shape memory alloys. J. Eng. Mater. Technol. 121 (1), 98 (1999).

    Article  Google Scholar 

  5. R. Noebe, D. Gaydosh, S. Padula, II, A. Garg, T. Biles, M. Nathal, and W.D. Armstrong: Properties and potential of two (Ni, Pt) Ti alloys for use as high-temperature actuator materials. Smart Mater. Struct. 5761, 364 (2005).

    CAS  Google Scholar 

  6. K.C. Atli, I. Karaman, and R.D. Noebe: Influence of tantalum additions on the microstructure and shape memory response of Ti50.5Ni24Pd25 high-temperature shape memory alloy. Mater. Sci. Eng., A 613, 250 (2014).

    Article  CAS  Google Scholar 

  7. X.L. Meng, Y.F. Zheng, W. Cai, and L.C. Zhao: Two-way shape memory effect of a TiNiHf high temperature shape memory alloy. J. Alloys Compd. 372 (1–2), 180 (2004).

    Article  CAS  Google Scholar 

  8. S. Besseghini, E. Villa, and A. Tuissi: Ni–Ti–Hf shape memory alloy: Effect of aging and thermal cycling. Mater. Sci. Eng., A 273, 390 (1999).

    Article  Google Scholar 

  9. S.M. Saghaian, H.E. Karaca, M. Souri, A.S. Turabi, and R.D. Noebe: Tensile shape memory behavior of Ni50.3Ti29.7Hf20 high temperature shape memory alloys. Mater. Des. 101, 340 (2016).

    Article  CAS  Google Scholar 

  10. S.M. Saghaian, H.E. Karaca, H. Tobe, M. Souri, R. Noebe, and Y.I. Chumlyakov: Effects of aging on the shape memory behavior of Ni-rich Ni50.3Ti29.7Hf20 single crystals. Acta Mater. 87, 128 (2015).

    Article  CAS  Google Scholar 

  11. D. Canadinc, W. Trehern, H. Oscan, C. Hayrettin, O. Karakoc, I. Karaman, F. Sun, and Z. Chaudhry: On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr. Mater. 135, 92 (2017).

    Article  CAS  Google Scholar 

  12. P.J.S. Buenconsejo, H.Y. Kim, H. Hosoda, and S. Miyazaki: Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater. 57 (4), 1068 (2009).

    Article  CAS  Google Scholar 

  13. J. Zhang, R. Rynko, J. Frenzel, C. Somsen, and G. Eggeler: Ingot metallurgy and microstructural characterization of Ti–Ta alloys. Int. J. Mater. Res. 105, 156 (2014).

    Article  CAS  Google Scholar 

  14. P.J.S. Buenconsejo: Development and characterization of Ti–Ni based and Ti–Ta based shape memory alloys for novel applications. Ph.D. thesis, University of Tsukuba, Japan, 2009.

    Google Scholar 

  15. B.S. Hickman: The formation of omega phase in titanium and zirconium alloys: A review. J. Mater. Sci. 4, 554 (1969).

    Article  CAS  Google Scholar 

  16. J.L. Murray: The Ta–Ti (tantalum–titanium) system. Bull. Alloy Phase Diagrams 2 (1), 62 (1981).

    Article  Google Scholar 

  17. T. Niendorf, P. Krooß, C. Somsen, R. Rynko, A. Paulsen, E. Batyrshina, J. Frenzel, G. Eggeler, and H.J. Maier: Cyclic degradation of titanium–tantalum high-temperature shape memory alloys—The role of dislocation activity and chemical decomposition. Funct. Mater. Lett. 8, 1550062 (2015).

    Article  CAS  Google Scholar 

  18. T. Niendorf, P. Krooß, E. Batyrsina, A. Paulsen, Y. Motemani, A. Ludwig, P. Buenconsejo, J. Frenzel, G. Eggeler, and H.J. Maier: Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HTSMAs). Mater. Sci. Eng., A 620, 359 (2015).

    Article  Google Scholar 

  19. T. Niendorf, P. Krooß, E. Batyrsina, A. Paulsen, J. Frenzel, G. Eggeler, and H.J. Maier: On the functional degradation of binary titanium–tantalum high-temperature shape memory alloys—A new concept for fatigue life extension. Funct. Mater. Lett. 7, 1450042 (2014).

    Article  Google Scholar 

  20. P.J.S. Buenconsejo, H.Y. Kim, and S. Miyazaki: Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr. Mater. 64, 1114 (2011).

    Article  CAS  Google Scholar 

  21. R. Rynko, A. Marquardt, A. Paulsen, J. Frenzel, C. Somsen, and G. Eggeler: Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int. J. Mater. Res. 106, 331 (2015).

    Article  CAS  Google Scholar 

  22. H.Y. Kim, T. Fukushima, P.J. Buenconsejo, T. Nam, and S. Miyazaki: Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Mater. Sci. Eng., A 528, 7238 (2011).

    Article  CAS  Google Scholar 

  23. W. Siegert, K. Neuking, M. Mertmann, and G. Eggele: First cycle shape memory effect in the ternary NiTiNb system. J. Phys. 112, 739 (2003).

    CAS  Google Scholar 

  24. T.B. Massalski, H. Okamato, P.R. Subramanian, and L. Kacprzak: Phasen-Diagramm Ti–Ta, Binary Alloys Phase Diagrams (ASM International, Metals Park, Ohio, 1990).

    Google Scholar 

  25. J.C. Williams, B.S. Hickman, and D.H. Leslie: The effect of ternary additions on the decomposition of metastable beta-phase Ti alloys. Metall. Trans. 2, 477 (1971).

    Article  CAS  Google Scholar 

  26. B.S. Hickman: Omega phase precipitation in alloys of titanium with transition metals. Trans. Metall. Soc. AIME 245, 1329 (1969).

    CAS  Google Scholar 

  27. R. Rynko: Mikrostrukturelle Untersuchungen von thermisch und thermomechanisch induzierten Strukturbildungsprozessen in Ti–Ta Hochtemperatur-Formgedächtnislegierungen. Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany, 2015.

    Google Scholar 

  28. J. Albrecht, T. Duering, and D. Richter: Verfahren zur Herstellung eines Bauteils aus einer Titanlegierung, sowie Bauteil und Verwendung des Bauteils. Europäische Patentanmeldung Patent Number 0062365, 7, 1982.

  29. K.C. Atli, I. Karaman, R.D. Noebe, and D. Gaydosh: The effect of training on two-way shape memory effect of binary NiTi and NiTi based ternary high temperature shape memory alloys. Mater. Sci. Eng., A 560, 653 (2013).

    Article  CAS  Google Scholar 

  30. J. Dadda, H.J. Maier, I. Karaman, and Y. Chumlyakov: High-temperature in situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals. Int. J. Mater. Res. 101, 1503 (2010).

    Article  CAS  Google Scholar 

  31. J. Dadda, H.J. Maier, I. Karaman, and Y.I. Chumlyakov: Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater. 57, 6123 (2009).

    Article  CAS  Google Scholar 

  32. Ch. Grossmann, J. Frenzel, V. Sampath, T. Depka, and G. Eggeler: Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall. Mater. Trans. A 40, 2530 (2009).

    Article  Google Scholar 

  33. Y. Al-Zain, Y. Sato, H.Y. Kim, H. Hosoda, T.H. Nam, and S. Miyazaki: Room temperature aging behavior of Ti–Nb–Mo-based superelastic alloys. Acta Mater. 60, 2437 (2012).

    Article  CAS  Google Scholar 

  34. M. Peters, J. Hemptenmacher, J. Kumpfert, and C. Leyens: Titan und Titanlegierungen: Struktur, Gefüge, Eigenschaften. In Titan und Titanlegierungen, M. Peters and C. Leyens, eds. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2002); p. 1.

    Chapter  Google Scholar 

  35. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys (ASM International, Materials Park, OH, 1994).

    Google Scholar 

  36. T.R. Bieler, R.M. Trevino, and L. Zeng: Alloys: Titanium. In F. Bassani, G.L. Liedl, and P. Wyder, eds., Encyclopedia of Condensed Matter Physics (Elsevier, 2005); p. 65.

    Chapter  Google Scholar 

  37. R.F. Vojtovich and Eh.I. Golovko: Oxidation of Ti–Ta and Ti–Nb alloys. Izv. Akad. Nauk SSSR, Met. 1, 222 (1979).

    Google Scholar 

Download references

ACKNOWLEDGMENT

Financial support by Deutsche Forschungsgemeinschaft within the Research Unit Program “Hochtemperatur-Formgedächtnislegierungen” (Contract nos. MA1175/34-2, LU1175/11-2, and NI1327/2-2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Jürgen Maier or Thomas Niendorf.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, H.J., Karsten, E., Paulsen, A. et al. Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy. Journal of Materials Research 32, 4287–4295 (2017). https://doi.org/10.1557/jmr.2017.319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.319

Navigation