Skip to main content
Log in

A Kinetic Study on the Evolution of Martensitic Transformation Behavior and Microstructures in Ti–Ta High-Temperature Shape-Memory Alloys During Aging

  • Special Issue: HTSMA 2018
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Ti–Ta alloys represent candidate materials for high-temperature shape-memory alloys (HTSMAs). They outperform several other types of HTSMAs in terms of cost, ductility, and cold workability. However, Ti–Ta alloys are characterized by a relatively fast microstructural degradation during exposure to elevated temperatures, which gives rise to functional fatigue. In the present study, we investigate how isothermal aging affects the martensitic transformation behavior and microstructures in Ti70Ta30 HTSMAs. Ti–Ta sheets with fully recrystallized grain structures were obtained from a processing route involving arc melting, heat treatments, and rolling. The final Ti–Ta sheets were subjected to an extensive aging heat treatment program. Differential scanning calorimetry and various microstructural characterization techniques such as scanning electron microscopy, transmission electron microscopy, conventional X-ray, and synchrotron diffraction were used for the characterization of resulting material states. We identify different types of microstructural evolution processes and their effects on the martensitic and reverse transformation. Based on these results, an isothermal time temperature transformation (TTT) diagram for Ti70Ta30 was established. This TTT plot rationalizes the dominating microstructural evolution processes and related kinetics. In the present work, we also discuss possible options to slow down microstructural and functional degradation in Ti–Ta HTSMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Funakubo H (1987) Shape memory alloys. Gordon and Breach, New York

    Google Scholar 

  2. Wayman CM, Deurig TW (1990) An introduction to martensite and shape memory. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London

    Google Scholar 

  3. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678

    Article  Google Scholar 

  4. Miyazaki S, Otsuka K (1989) Development of shape memory alloys. ISIJ Int 29(5):353–377

    Article  Google Scholar 

  5. Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

  6. Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng, A 378(1–2):16–23

    Article  Google Scholar 

  7. Duerig TW (2002) The use of superelasticity in modern medicine. MRS Bull 27(2):101–104

    Article  Google Scholar 

  8. Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng, A 273–275:134–148

    Article  Google Scholar 

  9. Bhattacharya K (2004) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford

    Google Scholar 

  10. Borboni A, Faglia R (2018) Robust design of a shape memory actuator with slider and slot layout and passive cooling control. Microsyst Technol 24(3):1379–1389

    Article  Google Scholar 

  11. Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315

    Article  Google Scholar 

  12. Yuan ZS, Lin DZ, Cui Y et al (2018) Research progress on the phase transformation behavior, microstructure and property of NiTi based high temperature shape memory alloys. Rare Met Mat Eng 47(7):2269–2274

    Google Scholar 

  13. Ronald N, Tiffany B, Santo P (2006) NiTi-based high-temperature shape-memory alloys. In: Soboyejo WO, Srivatsan TS (eds) Advanced structural materials. CRC Press, Boca Raton

    Google Scholar 

  14. Firstov GS, Van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys: some recent developments. Mater Sci Eng, A 378(1–2):2–10

    Article  Google Scholar 

  15. Bucsek AN, Hudish GA, Bigelow GS, Noebe RD, Stebner AP (2016) Composition, compatibility, and the functional performances of ternary NiTiX high-temperature shape memory alloys. Shape Mem Superelast 2(1):62–79

    Article  Google Scholar 

  16. Buenconsejo PJS, Ludwig A (2014) Composition–structure–function diagrams of Ti–Ni–Au thin film shape memory alloys. ACS Comb Sci 16(12):678–685

    Article  Google Scholar 

  17. Monroe JA, Karaman I, Lagoudas DC, Bigelow G, Noebe RD, Padula S II (2011) Determining recoverable and irrecoverable contributions to accumulated strain in a NiTiPd high-temperature shape memory alloy during thermomechanical cycling. Scripta Mater 65(2):123–126

    Article  Google Scholar 

  18. Kumar PK, Lagoudas DC (2010) Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy. Acta Mater 58(5):1618–1628

    Article  Google Scholar 

  19. Lin B, Gall K, Maier HJ, Waldron R (2009) Structure and thermomechanical behavior of NiTiPt shape memory alloy wires. Acta Biomater 5(1):257–267

    Article  Google Scholar 

  20. Evirgen A, Pons J, Karaman I, Santamarta R, Noebe R (2018) H-phase precipitation and martensitic transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr High-temperature shape memory alloys. Shape Mem Superelast 4(1):85–92

    Article  Google Scholar 

  21. Santamarta R, Evirgen A, Perez-Sierra AM et al (2015) Effect of thermal treatments on Ni-Mn-Ga and Ni-rich Ni-Ti-Hf/Zr high-temperature shape memory alloys. Shape Mem Superelast 1(4):418–428

    Article  Google Scholar 

  22. Elahinia M, Moghaddam NS, Amerinatanzi A et al (2018) Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr Mater 145:90–94

    Article  Google Scholar 

  23. Zhang X, Wang Q, Zhao X, Wang F, Liu QS (2018) Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys. Appl Phys A 124(3):6

    Article  Google Scholar 

  24. Jiang HX, Wang CP, Xu WW et al (2017) Alloying effects of Ga on the Co-V-Si high-temperature shape memory alloys. Mater Des 116:300–308

    Article  Google Scholar 

  25. Perez-Checa A, Feuchtwanger J, Barandiaran JM, Sozinov A, Ullakko K, Chernenko VA (2018) Ni-Mn-Ga-(Co, Fe, Cu) high temperature ferromagnetic shape memory alloys: effect of Mn and Ga replacement by Cu. Scr Mater 154:131–133

    Article  Google Scholar 

  26. Cortie MB, Kealley CS, Bhatia V, Thorogood GJ, Elcombe MM, Avdeev M (2011) High temperature transformations of the Au7Cu5Al4 shape-memory alloy. J Alloy Compd 509(8):3502–3508

    Article  Google Scholar 

  27. Tan C, Cai W, Tian X (2007) Structural, electronic and elastic properties of NbRu high-temperature shape memory alloys. Scr Mater 56(7):625–628

    Article  Google Scholar 

  28. Van Humbeeck J (1997) Shape memory materials: state of the art and requirements for future applications. J Phys IV 7(C5):C5-3–C5-12

    Google Scholar 

  29. Wojcik CC (2009) Properties and heat treatment of high transition temperature Ni-Ti-Hf alloys. J Mater Eng Perform 18(5–6):511–516

    Article  Google Scholar 

  30. Canadinc D, Trehern W, Ozcan H et al (2017) On the deformation response and cyclic stability of Ni50Ti35Hf15 high temperature shape memory alloy wires. Scr Mater 135:92–96

    Article  Google Scholar 

  31. Carl M, Van Doren B, Young ML (2018) In situ synchrotron radiation X-ray diffraction study on phase and oxide growth during a high temperature cycle of a NiTi-20 at.% Zr high temperature shape memory alloy. Shape Mem Superelast 4(1):174–185

    Article  Google Scholar 

  32. Buenconsejo PJS, Kim HY, Miyazaki S (2011) Novel beta-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr Mater 64(12):1114–1117

    Article  Google Scholar 

  33. Zhang J, Rynko R, Frenzel J, Somsen C, Eggeler G (2014) Ingot metallurgy and microstructural characterization of Ti–Ta alloys. Int J Mater Res 105(2):156–167

    Article  Google Scholar 

  34. Lütjering G, Williams JC (2007) Titanium. Springer, Heidelberg

    Google Scholar 

  35. Kim HY, Miyazaki S (2018) Ni-free Ti-based shape memory alloys. Butterworth-Heinemann, Oxford

    Google Scholar 

  36. Murray JL (1981) The Ta-Ti (Tantalum-Titanium) system. Bull Alloy Phase Diagr 2(1):62–66

    Article  Google Scholar 

  37. Bagarjatskii Y, Nosova G, Tagunova T (1958) Laws of formation of metastable phase in titanium alloys. Dokl Akad Nauk SSSR 122(4):593–596

    Google Scholar 

  38. Petrzhik M, Fedotov S, Kovneristyi YK, Zhebyneva N (1992) Effect of thermal cycling on the structure of quenched alloys of the Ti−Ta−Nb system. Met Sci Heat Treat 34(3):190–193

    Article  Google Scholar 

  39. Kim HY, Fukushima T, Buenconsejo PJS, Nam T-H, Miyazaki S (2011) Martensitic transformation and shape memory properties of Ti-Ta-Sn high temperature shape memory alloys. Mater Sci Eng, A 528(24):7238–7246

    Article  Google Scholar 

  40. Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys. Acta Mater 57(8):2509–2515

    Article  Google Scholar 

  41. Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57(4):1068–1077

    Article  Google Scholar 

  42. Chakraborty T, Rogal J, Drautz R (2015) Martensitic transformation between competing phases in Ti-Ta alloys: a solid-state nudged elastic band study. J Phys: Condens Matter 27:115401

    Google Scholar 

  43. Chakraborty T, Rogal J, Drautz R (2016) Unraveling the composition dependence of the martensitic transformation temperature: a first-principles study of Ti-Ta alloys. Phys Rev B 94(22):224104

    Article  Google Scholar 

  44. Ferrari A, Paulsen A, Frenzel J, Rogal J, Eggeler G, Drautz R (2018) Unusual composition dependence of transformation temperatures in Ti-Ta-X shape memory alloys. Phys Rev Mater 2(7):073609

    Article  Google Scholar 

  45. Rynko R, Marquardt A, Paulsen A, Frenzel J, Somsen C, Eggeler G (2015) Microstructural evolution in a Ti–Ta high-temperature shape memory alloy during creep. Int J Mater Res 106(4):331–341

    Article  Google Scholar 

  46. Niendorf T, Krooss P, Batyrsina E et al (2014) On the functional degradation of binary titanium-tantalum high-temperature shape memory alloys—a new concept for fatigue life extension. Funct Mater Lett 7(4):1450042

    Article  Google Scholar 

  47. Niendorf T, Krooss P, Batyrsina E et al (2015) Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs). Mater Sci Eng, A 620:359–366

    Article  Google Scholar 

  48. Niendorf T, Krooß P, Somsen C et al (2015) Cyclic degradation of titanium–tantalum high-temperature shape memory alloys—the role of dislocation activity and chemical decomposition. Funct Mater Lett 8(6):1550062

    Article  Google Scholar 

  49. Maier HJ, Karsten E, Paulsen A et al (2017) Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy. J Mater Res 32(23):4287–4295

    Article  Google Scholar 

  50. Abkowitz S, Abkowitz SM, Fisher H, Allen SM (2008) The potential of titanium-tantalum alloys for implantable medical devices. Med Device Mater Iv:124–129

    Google Scholar 

  51. Li YC, Xiong JY, Wong CS, Hodgson PD, Wen C (2009) Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Tissue Eng Pt A 15(10):3151–3159

    Article  Google Scholar 

  52. Motemani Y, Kadletz PM, Maier B, et al. (2015) Microstructure, shape memory effect and functional stability of Ti67Ta33 thin films. Adv Eng Mater 17(10):1425-1433

  53. Motemani Y, Buenconsejo PJS, Craciunescu C, Ludwig A (2014) High-temperature shape memory effect in Ti-Ta thin films sputter deposited at room temperature. Adv Mater Interfaces 1(3):140019

    Article  Google Scholar 

  54. Sikka SK, Vohra YK, Chidambaram R (1982) Omega-phase in materials. Prog Mater Sci 27(3–4):245–310

    Article  Google Scholar 

  55. Hickman BS (1968) Omega phase precipitation in titanium alloys. J Met 20(8):A121

    Google Scholar 

  56. Ohmori Y, Ogo T, Nakai K, Kobayashi S (2001) Effects of ω-phase precipitation on beta → α, α ‘ transformations in a metastable β titanium alloy. Mater Sci Eng, A 312(1–2):182–188

    Article  Google Scholar 

  57. Lai MJ, Tasan CC, Zhang J, Grabowski B, Huang LF, Raabe D (2015) Origin of shear induced β to ω transition in Ti–Nb-based alloys. Acta Mater 92:55–63

    Article  Google Scholar 

  58. Banerjee S, Tewari R, Dey GK (2006) Omega phase transformation—morphologies and mechanisms. Int J Mater Res 97(7):963–977

    Article  Google Scholar 

  59. Li T, Kent D, Sha G, Dargusch MS, Cairney JM (2015) The mechanism of ω-assisted α phase formation in near β-Ti alloys. Scr Mater 104:75–78

    Article  Google Scholar 

  60. Prima F et al (2000) ω precipitation in a beta metastable titanium alloy, resistometric study. Mater Trans, JIM 41(8):1092–1097

    Article  Google Scholar 

  61. Li T, Kent D, Sha G et al (2016) New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Mater 106:353–366

    Article  Google Scholar 

  62. Collings EW (1975) Magnetic studies of omega-phase precipitation and aging in titanium-vanadium alloys. J Less Common Met 39(1):63–90

    Article  Google Scholar 

  63. Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458

    Article  Google Scholar 

  64. Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl Instrum Methods B 268(3–4):334–340

    Article  Google Scholar 

  65. Lutterotti L, Gualtieri A, Aldrighetti S (1996) Rietveld refinement using Debye-Scherrer film techniques. Eur Powder Differ 228:29–34

    Google Scholar 

  66. Dippel AC, Liermann HP, Delitz JT (2015) Beamline P02. 1 at PETRA III for high‐resolution and high‐energy powder diffraction. J Synchrotron Radiat 22(3):675–687

    Article  Google Scholar 

  67. Paulsen A (2019) Herstellung, Eigenschaften und Phastenstabilitäten von Hochtemperaturformgedächtnislegierungen auf Basis von Ti-Ta. Thesis, Ruhr-Universität Bochum, Bochum

  68. Feeney JA, Blackburn MJ (1970) Effect of microstructure on the strength, toughness, and stress-corrosion cracking susceptibility of a metastable beta titanium alloy (Ti−11.5 Mo−6Zr−4.5 Sn). Metall Trans 1(12):3309–3323

    Google Scholar 

  69. Rhodes CG, Williams JC (1975) The precipitation of α-phase in metastable β-phase Ti alloys. Metall Trans A 6(11):2103–2114

    Article  Google Scholar 

  70. Williams J, Hickman B, Leslie D (1971) The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys. Metall Trans 2(2):477–484

    Article  Google Scholar 

  71. Chen F, Xu G, Zhang X, Zhou K (2017) Isothermal kinetics of β↔ α transformation in Ti-55531 alloy influenced by phase composition and microstructure. Mater Des 130:302–316

    Article  Google Scholar 

  72. Bönisch M, Panigrahi A, Calin M et al (2017) Thermal stability and latent heat of Nb–rich martensitic Ti-Nb alloys. J Alloy Compd 697:300–309

    Article  Google Scholar 

  73. Aeby-Gautier E, Bruneseaux F, Da Costa Teixeira J, Appolaire B, Geandier G, Denis S (2007) Microstructural formation in Ti alloys: in-situ characterization of phase transformation kinetics. JOM 59(1):54–58

    Article  Google Scholar 

  74. Hui Q, Xue XY, Kou HC, Lai MJ, Tang B, Li JS (2013) Kinetics of the omega phase transformation of Ti-7333 titanium alloy during continuous heating. J Mater Sci 48(5):1966–1972

    Article  Google Scholar 

  75. Wahlbeck PG, Gilles PW (1966) Reinvestigation of the phase diagram for the system titanium-oxygen. J Am Ceram Soc 49(4):180–183

    Article  Google Scholar 

  76. Ikeda M, Komatsu S-Y, Nakamura Y (2002) The effect of Ta content on phase constitution and aging behavior of Ti-Ta binary alloys. Mater Trans 43(12):2984–2990

    Article  Google Scholar 

  77. Ikeda M, Komatsu S-Y, Nakamura Y (2004) Effects of Sn and Zr additions on phase constitution and aging behavior of Ti-50 mass% Ta alloys quenched from β single phase region. Mater Trans 45(4):1106–1112

    Article  Google Scholar 

  78. Barzilai S, Toher C, Curtarolo S, Levy O (2016) Evaluation of the tantalum-titanium phase diagram from ab-initio calculations. Acta Mater 120:255–263

    Article  Google Scholar 

  79. Kadletz PM, Motemani Y, Iannotta J et al (2018) Crystallographic structure analysis of a Ti–Ta thin film materials library fabricated by combinatorial magnetron sputtering. ACS Comb Sci 20(3):137–150

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Deutsche Forschungsgemeinschaft (DFG) through Projects TP1 (FR2675/3-2), TP2 (SO505/2-2 and EG101/22-2), and TP3 (SCHM930/13-2) in the framework of the research group FOR 1766 “Hochtemperatur-Formgedächtnislegierungen.” We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III and we would like to thank Jozef Bednarcik for assistance in using photon beamline P02.1 and the support laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Paulsen.

Additional information

This article is an invited paper selected from presentations at the 2nd International Conference on High-Temperature Shape-Memory Alloys and has been expanded from the original presentation. HTSMA 2018 was held in Irsee, Germany, May 15–18, 2018, and was organized by the German Materials Society (DGM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulsen, A., Frenzel, J., Langenkämper, D. et al. A Kinetic Study on the Evolution of Martensitic Transformation Behavior and Microstructures in Ti–Ta High-Temperature Shape-Memory Alloys During Aging. Shap. Mem. Superelasticity 5, 16–31 (2019). https://doi.org/10.1007/s40830-018-00200-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-018-00200-7

Keywords

Navigation