Skip to main content
Log in

Microstructural characterization of cyclic deformation behavior of metastable austenitic stainless steel AISI 347 with different surface morphology

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, specimens of the metastable austenitic stainless steel AISI 347 with different surface morphologies were investigated in stress-controlled fatigue tests in the high cycle fatigue (HCF) regime at ambient temperature. Specific surface morphologies were generated by cryogenic turning with CO2 snow cooling. As a result of the metastable austenite microstructure, phase changes from paramagnetic austenite to ferromagnetic martensite take place in the near-surface regime during cryogenic turning as well as in the whole specimen volume during monotonic and/or cyclic elastic–plastic deformation. The metastability of AISI 347 was characterized according to the MS-temperature determined from the chemical composition and by X-ray diffraction measurements with in situ cooling. Microhardness and strength of both phases were measured. Near-surface microstructure was analyzed by optical and scanning electron microscopy after focused ion beam preparation. Besides a partially martensitic surface layer, a thin nanocrystalline layer, both induced by cryogenic turning, was observed. In case of cyclic loading, the martensitic surface layer leads to a reduction of plastic strain amplitude as well as a retardation of crack initiation and consequently to an increase in fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. J.K. Leuk Lai, K.H. Lo, and C.H. Shek: Stainless Steels: An Introduction and Their Recent Developments (Bentham Science Publishers, Sharjah, United Arab Emirates, 2012).

    Google Scholar 

  2. P. Marshall: Austenitic Stainless Steels: Microstructure and Mechanical Properties (Elsevier Applied Science Publishers Ltd, London and New York, 1984).

    Google Scholar 

  3. S. Martin, S. Wolf, U. Martin, L. Kruger, and D. Rafaja: Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature. Metall. Mater. Trans. A 47, 49 (2016).

    Article  CAS  Google Scholar 

  4. S. Ackermann, S. Martin, M.R. Schwarz, C. Schimpf, D. Kulawinski, C. Lathe, S. Henkel, D. Rafaja, H. Biermann, and A. Weidner: Investigation of phase transformations in high-alloy austenitic TRIP steel under high pressure (up to 18 GPa) by in situ synchrotron X-ray diffraction and scanning electron microscopy. Metall. Mater. Trans. A 47, 95 (2016).

    Article  CAS  Google Scholar 

  5. M. Smaga, F. Walther, and D. Eifler: Deformation-induced martensitic transformation in metastable austenitic steels. Mater. Sci. Eng., A 483–484, 394 (2008).

    Article  Google Scholar 

  6. J. Man, M. Smaga, I. Kubena, D. Eifler, and J. Polák: Effect of metallurgical variables on the austenite stability in fatigued AISI 304 type steels. Eng. Fract. Mech. (2017), in press. https://doi.org/10.1016/j.engfracmech.2017.04.041.

    Google Scholar 

  7. M. Smaga and D. Eifler: Fatigue life caclulation of metastable austenitic stainless steels on the basis of magnetic measurements. Mater. Test. 51, 370 (2009).

    Article  Google Scholar 

  8. F. Hahnenberger, M. Smaga, and D. Eifler: Microstructural investigation of the fatigue behavior and phase transformation in metastable austenitic steels at ambient and lower temperatures. Int. J. Fatigue 69, 36 (2014).

    Article  CAS  Google Scholar 

  9. J. Man, I. Kubena, M. Smaga, O. Man, A. Jaevenpaa, A. Weidner, Z. Chlup, and J. Polak: Microstructural changes during deformation of AISI 300 grade austenitic stainless steels: Impact of chemical heterogeneity. Proc. Struct. Integr. 2, 2299 (2016).

    Google Scholar 

  10. K.H. Lo, C.H. Shek, and J.K.L. Lai: Recent developments in stainless steels. Mater. Sci. Eng., R 65, 39 (2009).

    Article  Google Scholar 

  11. H. Mughrabi: Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. A 40, 1258 (2009).

    Article  Google Scholar 

  12. J. Man and J. Polák: Mechanisms of extrusion and intrusion formation in fatigued crystalline materials. Mater. Sci. Eng., A 596, 15 (2014).

    Article  Google Scholar 

  13. C. Ye, S. Suslov, D. Lin, and G.J. Cheng: Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties. Philos. Mag. 92, 1369 (2012).

    Article  CAS  Google Scholar 

  14. H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, and K. Lu: Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 71 (2003).

    Article  Google Scholar 

  15. D. Meyer: Cryogenic deep rolling—An energy based approach for enhanced cold surface hardening. CIRP Ann. 61, 543 (2012).

    Article  Google Scholar 

  16. J.C. Aurich, P. Mayer, B. Kirsch, D. Eifler, M. Smaga, and R. Skorupski: Characterization of deformation induced surface hardening during cryogenic turning of AISI 347. CIRP Ann. 63, 65 (2014).

    Article  Google Scholar 

  17. P. Mayer, B. Kirsch, and J.C. Aurich: Investigations on cryogenic turning to achieve surface hardening of metastable austenitic steel AISI 347. Adv. Mater. Res. 1018, 153 (2014).

    Article  CAS  Google Scholar 

  18. P. Mayer, R. Skorupski, M. Smaga, D. Eifler, and J.C. Aurich: Deformation induced surface hardening when turning metastable austenitic steel AISI 347 with different cryogenic cooling strategies. Proc. CIRP 14, 101 (2014).

    Article  Google Scholar 

  19. S. Martin, O. Fabrichnaya, and D. Rafaja: Prediction of the local deformation mechanisms in metastable austenitic steels from the local concentration of the main alloying elements. Mater. Lett. 159, 484 (2015).

    Article  CAS  Google Scholar 

  20. H. Becker, H. Brandis, and W. Küppers: Zur Verfestigung instabil austenitischer nichtrostender Stähle und ihre Auswirkung auf das Umformverhalten von Feinblechen. Thyssen Edelstahl Tech. Ber. 12, 35 (1986).

    CAS  Google Scholar 

  21. G.H. Eichelmann and F.C. Hull: The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18-8 type stainless steel. Trans. ASM 45, 77 (1953).

    Google Scholar 

  22. T. Angel: Formation of martensite in austenitic stainless steels—Effects of deformation, temperature, and composition. J. Iron Steel Inst. 177, 165 (1954).

    CAS  Google Scholar 

  23. J. Talonen, P. Aspegren, and P. Hänninen: Comparison of different methods for measuring strain induced α-martensite content in austenitic steels. Mater. Sci. Technol. 20, 1506 (2004).

    Article  CAS  Google Scholar 

  24. D.L. Bish and S.A. Howard: Quantitative phase analysis using the rietveld method. J. Appl. Crystallogr. 21, 86 (1988).

    Article  CAS  Google Scholar 

  25. A. Basa, C. Thaulow, and A. Barnoush: Chemically induced phase transformation in austenite by focused ion beam. Metall. Mater. Trans. A 45, 1189 (2014).

    Article  CAS  Google Scholar 

  26. R. Skorupski: Einfluss der oberflächennahen Martensitbildung auf das LCF- und HCF-Ermüdungsverhalten sowie die Verschleißfestigkeit des metastabilen austenitischen Stahls X6CrNiNb1810. Ph.D. thesis, Department of Mechanical and Process Engineering, TU, Kaiserslautern, 2017.

    Google Scholar 

  27. M. Smaga, R. Skorupski, A. Boemke, P. Mayer, B. Kirsch, J.C. Aurich, I. Raid, J. Seewig, J. Man, D. Eifler, and T. Beck: Influences of surface morphology of fatigue behavior of metastable austenitic stainless steel AISI 347 at ambient temperature and 300 °C. Structural Integrity Procedia, 2nd International Conference on Structural Integrity, ICSI (2017), in press.

    Google Scholar 

  28. M. Kumagai, K. Akita, Y. Itano, M. Imafuku, and S.I. Ohya: X-ray diffraction study on microstructures of shot/laser-peened AISI316 stainless steel. J. Nucl. Mater. 443, 107 (2013).

    Article  CAS  Google Scholar 

  29. I. Nikitin, B. Scholtes, H.J. Maier, and I. Altenberger: High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scr. Mater. 50, 1345 (2004).

    Article  CAS  Google Scholar 

  30. L. Trško, O. Bokůvka, F. Nový, and M. Guagliano: Effect of severe shot peening on ultra-high-cycle fatigue of a low alloy steel. Mater. Des. 57, 103 (2014).

    Article  Google Scholar 

  31. I. Altenberger, B. Scholtes, U. Martin, and H. Oettel: Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Mater. Sci. Eng., A 264, 1 (1999).

    Article  Google Scholar 

  32. H.J. Bassler and D. Eifler: Cyclic deformation behaviour and plasticity-induced martensite formation of the austenitic steel X6CrNiTi1810. Fatigue 99 (1), 205 (1999).

    Google Scholar 

  33. A. Sorich, M. Smaga, and D. Eifler: Influence of cyclic deformation induced phase transformation on the fatigue behavior of the austenitic steel X6CrNiNb1810. Adv. Mater. Res. 891–892, 1231 (2014).

    Article  Google Scholar 

  34. M. Bayerlein, H-J. Christ, and H. Mughrabi: Plasticity-induced martensitic transformation during cyclic deformation of AISI 304L stainless steel. Mater. Sci. Eng., A 114, L11 (1989).

    Article  Google Scholar 

  35. R. Skorupski, M. Smaga, and D. Eifler: Low cycle fatigue behavior of AISI 347 with varied surface morphology. Proc. LCF7 39 (2013).

Download references

ACKNOWLEDGMENTS

The authors thank the German Research Foundation (DFG) for the financial support within the CRC 926 “Microscale Morphology of Component Surfaces”. The fatigue specimens were turned at the Institute for Manufacturing Technology and Production Systems (FBK), TU Kaiserslautern, Germany. They thank Prof. J.C. Aurich and P. Mayer for their support. The focus ion beam (FIB) preparation and SEM investigation of nanocrystalline surface structures were performed at Nano Structuring Center (NSC) TU Kaiserslautern, Germany. They thank Dr. T. Löber for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Smaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaga, M., Skorupski, R., Eifler, D. et al. Microstructural characterization of cyclic deformation behavior of metastable austenitic stainless steel AISI 347 with different surface morphology. Journal of Materials Research 32, 4452–4460 (2017). https://doi.org/10.1557/jmr.2017.318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.318

Navigation