Skip to main content
Log in

High and very high cycle fatigue failure mechanisms in selective laser melted aluminum alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Selective laser melting, a laser-based additive manufacturing process, can manufacture components with good geometrical integrity. Application of the selective laser melting process for serial production is subject to its reliability on mechanical properties, especially on fatigue behavior, when it is required to be applied for dynamic applications. This study focuses on microstructural, quasistatic, high cycle fatigue (HCF), and very high cycle fatigue (VHCF) mechanisms of aluminum alloys manufactured by selective laser melting. Manufacturing of hybrid structures by selective laser melting process is also investigated. Microstructural features were investigated for process-induced effects and the corresponding influence on quasistatic and fatigue properties. The microstructural features can be controlled in the selective laser melting process for required properties. Joining strengths in hybrid structures can be improved by post process heat-treatments. Material constants in different fatigue regions were determined, and higher fatigue strength of hybrid alloys was achieved in HCF as well as VHCF regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. I. Gibson, D.W. Rosen, and B. Stucker: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing (Springer, New York, New York, 2010).

    Book  Google Scholar 

  2. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Laser additive manufacturing of metallic components. Int. Mater. Rev. 57 (3), 133–164 (2012).

    Article  CAS  Google Scholar 

  3. S. van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. van Oosterwyck, J-P. Kruth, and J. Schrooten: The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 8 (7), 2824–2834 (2012).

    Article  Google Scholar 

  4. J.J. Lewandowski and M. Seifi: Metal additive manufacturing. Annu. Rev. Mater. Res. 46 (1), 151–186 (2016).

    Article  CAS  Google Scholar 

  5. L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, P.W. Shindo, F. Medina, and R.B. Wicker: Fabrication of metal and alloy components by additive manufacturing. J. Mater. Res. Technol. 1 (1), 42–54 (2012).

    Article  CAS  Google Scholar 

  6. S. Siddique, E. Wycisk, J. Tenkamp, K. Hoops, G. Behrens, C. Emmelmann, and F. Walther: Mechanical performance of hybrid aluminum structures manufactured by combination of laser additive manufacturing and conventional machining processes. In Fortschritte in der Werkstoffprüfung für Forschung und Praxis, M. Borsutzki, G. Moninger, eds. (Stahleisen, Düsseldorf, Germany, 2015); pp. 157–162.

    Google Scholar 

  7. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker: Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28 (1), 1–14 (2012).

    Article  CAS  Google Scholar 

  8. E. Abele, H.A. Stoffregen, M. Kniepkamp, S. Lang, and M. Hampe: Selective laser melting for manufacturing of thin-walled porous elements. J. Mater. Process. Technol. 215, 114–122 (2015).

    Article  Google Scholar 

  9. C. Guo, W. Ge, and F. Lin: Effects of scanning parameters on material deposition during electron beam selective melting of Ti–6Al–4V powder. J. Mater. Process. Technol. 217, 148–157 (2015).

    Article  CAS  Google Scholar 

  10. X.J. Wang, L.C. Zhang, M.H. Fang, and T.B. Sercombe: The effect of atmosphere on the structure and properties of a selective laser melted Al–12Si alloy. Mater. Sci. Eng., A 597, 370–375 (2014).

    Article  CAS  Google Scholar 

  11. J. Hernandez, S.J. Li, E. Martinez, L.E. Murr, X.M. Pan, K.N. Amato, X.Y. Cheng, F. Yang, C.A. Terrazas, S.M. Gaytan, Y.L. Hao, R. Yang, F. Medina, and R.B. Wicker: Microstructures and hardness properties for β-Phase Ti–24Nb–4Zr–7.9Sn alloy fabricated by electron beam melting. J. Mater. Sci. Technol. 29 (11), 1011–1017 (2013).

    Article  CAS  Google Scholar 

  12. J. Schwerdtfeger and C. Körner: Selective electron beam melting of Ti–48Al–2Nb–2Cr. Intermetallics 49, 29–35 (2014).

    Article  CAS  Google Scholar 

  13. E. Louvis, P. Fox, and C.J. Sutcliffe: Selective laser melting of aluminium components. J. Mater. Process. Technol. 211 (2), 275–284 (2011).

    Article  CAS  Google Scholar 

  14. B. Zhang, H. Liao, and C. Coddet: Effects of processing parameters on properties of selective laser melting Mg–9% Al powder mixture. Mater. Des. 34, 753–758 (2012).

    Article  CAS  Google Scholar 

  15. V. Cain, L. Thijs, J. van Humbeeck, B. van Hooreweder, and R. Knutsen: Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Addit. Manuf. 5, 68–76 (2015).

    CAS  Google Scholar 

  16. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd: The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metall. Mater. Trans. A 41 (13), 3422–3434 (2010).

    Article  CAS  Google Scholar 

  17. E. Wycisk, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann: Fatigue performance of laser additive manufactured Ti–6Al–4V in very high cycle fatigue regime up to 109 cycles. Front. Mater. 2, 72 (2015).

    Article  Google Scholar 

  18. H.K. Rafi, N.V. Karthik, H. Gong, T. Starr, and B. Stucker: Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J. Mater. Eng. Perform. 22 (12), 3872–3883 (2013).

    Article  CAS  Google Scholar 

  19. A. Norman, K. Hyde, F. Costello, S. Thompson, S. Birley, and P. Prangnell: Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings. Mater. Sci. Eng., A 354 (1–2), 188–198 (2003).

    Article  Google Scholar 

  20. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers: Friction stir welding of aluminium alloys. Int. Mater. Rev. 54 (2), 49–93 (2013).

    Article  Google Scholar 

  21. N. Kaufmann, M. Imran, T.M. Wischeropp, C. Emmelmann, S. Siddique, and F. Walther: Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Phys. Procedia 83, 918–926 (2016).

    Article  CAS  Google Scholar 

  22. S. Bremen, W. Meiners, and A. Diatlov: Selective laser melting. Laser Tech. J. 9 (2), 33–38 (2012).

    Article  Google Scholar 

  23. K.G. Prashanth, R. Damodaram, S. Scudino, Z. Wang, K. Prasad Rao, and J. Eckert: Friction welding of Al–12Si parts produced by selective laser melting. Mater. Des. 57, 632–637 (2014).

    Article  CAS  Google Scholar 

  24. K. Kempen, L. Thijs, J. van Humbeeck, and J-P. Kruth: Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia 39, 439–446 (2012).

    Article  CAS  Google Scholar 

  25. S. Siddique, E. Wycisk, G. Frieling, C. Emmelmann, and F. Walther: Microstructural and mechanical properties of selective laser melted Al 4047. Appl. Mech. Mater. 752–753, 485–490 (2015).

    Article  Google Scholar 

  26. S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, and F. Walther: Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J. Mater. Process. Technol. 221, 205–213 (2015).

    Article  CAS  Google Scholar 

  27. S. Siddique, M. Imran, M. Rauer, M. Kaloudis, E. Wycisk, C. Emmelmann, and F. Walther: Computed tomography for characterization of fatigue performance of selective laser melted parts. Mater. Des. 83, 661–669 (2015).

    Article  Google Scholar 

  28. E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder: Additive manufactured AlSi10Mg samples using selective laser melting (SLM). Mater. Des. 34, 159–169 (2012).

    Article  CAS  Google Scholar 

  29. S. Siddique, M. Imran, and F. Walther: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy. Int. J. Fatigue 94 (2), 246–254 (2016).

    Google Scholar 

  30. S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, and F. Walther: Fatigue assessment of laser additive manufactured AlSi12 eutectic alloy in the very high cycle fatigue (VHCF) range up to 1E9 cycles. Mater. Today 3, 2853–2860 (2016).

    Google Scholar 

  31. A.W. Schumacher: Aluminium-Gusslegierungen. Available at: http://www.aw-schumacher.de/index.html (accessed May 18, 2017).

  32. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, and J. Eckert: Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng., A 590, 153–160 (2014).

    Article  CAS  Google Scholar 

  33. X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, and T.B. Sercombe: A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater. 95, 74–82 (2015).

    Article  CAS  Google Scholar 

  34. H. Mughrabi: Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. Int. J. Fatigue 28, 1501–1508 (2006).

    Article  CAS  Google Scholar 

  35. W. Hesse: Aluminium Material Data Sheets, Vol. 7 (Beuth Verlag, Berlin, Germany, 2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge Eric Wycisk and Claus Emmelmann from Institute of Laser and System Technologies (iLAS), Technical University Hamburg-Harburg (TUHH) regarding their excellent cooperation in manufacturing of investigated specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Awd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddique, S., Awd, M., Tenkamp, J. et al. High and very high cycle fatigue failure mechanisms in selective laser melted aluminum alloys. Journal of Materials Research 32, 4296–4304 (2017). https://doi.org/10.1557/jmr.2017.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.314

Navigation