Skip to main content
Log in

Ex and in situ investigations on the role of persistent slip bands and grain boundaries in fatigue crack initiation

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polycrystalline copper (99.9%) was fatigued at a total strain amplitude of 0.1 and 0.2%, respectively. The tests were performed in situ under vacuum in a Large Chamber-Scanning Electron Microscope. By a repeated combination of in situ fatigue testing and ex situ focused ion beam milling, a deep insight into the mechanism of fatigue crack initiation and early stages of crack initiation at persistent slip bands (PSBs) and their interaction with grain boundaries was obtained. The EBSD-technique showed early slip activation and the exclusive formation of extrusions in favorably oriented grains until a certain extrusion height was reached. At the total strain amplitude of 0.2%, extrusions are formed not only in favorably oriented grains but also in grains with a lower Schmid factor due to high compatibility stresses at the grain boundaries. Extrusion growth through grain boundaries is affected by the orientation of the primary slip systems in the neighboring grains and the additional anisotropy stresses. It is concluded that early stages of crack initiation are the consequence of the formation of extrusions at PSBs in combination with the clustering of vacancies along the PSB boundaries, as it was proposed by the well-known Essmann-Gösele-Mughrabi model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. A. Wöhler: Über die Festigkeitsversuche mit Eisen und Stahl. Z. Bauwes. 20, 73 (1870).

    Google Scholar 

  2. J.A. Ewing and J.C. Humphrey: The fracture of metals under repeated alternation of stress. Philos. Trans. R. Soc. London 200, 321 (1903).

    Google Scholar 

  3. P.J.E. Forsyth: Exudation of material from slip bands at the surface of fatigued crystals of an aluminum–copper alloy. Nature 171, 172 (1953).

    Article  Google Scholar 

  4. S.S. Manson: Behavior of materials under conditions of thermal stress. NACA Rep. 1170, 1 (1954). (Supersedes NACA TN 2933 (1953)).

    Google Scholar 

  5. L.F. Coffin: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931 (1954).

    CAS  Google Scholar 

  6. N. Thompson, N. Wadsworthand, and N. Louat: The origin of fatigue fracture in copper. Philos. Mag. 1–2, 113 (1956).

    Article  Google Scholar 

  7. H. Mughrabi: Dislocations in fatigue. In Dislocations and Properties of Real Materials, Institute of Metals Vol. 323 (The Institute of Metals, London, 1985); p. 244.

    Google Scholar 

  8. P. Paris and F. Erdogan: A critical analysis of crack propagation laws. J. Basic Eng. 85, 528 (1963).

    Article  CAS  Google Scholar 

  9. F. Erdogan and G.C. Sih: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519 (1963).

    Article  Google Scholar 

  10. K.T. Faber and A.G. Evans: Crack deflection processes—I. Theory. Acta Metall. 31, 565 (1983).

    Article  Google Scholar 

  11. S. Suresh and R.O. Ritchie: Geometric model for fatigue crack closure induced by fracture surface roughness. Metall. Trans. A 13, 1627 (1982).

    Article  Google Scholar 

  12. K. Tanaka, Y. Nakai, and M. Yamashita: Fatigue growth threshold of small cracks. Int. J. Fract. 17, 519 (1981).

    CAS  Google Scholar 

  13. R. Pippan, C. Zelger, E. Gach, C. Bichler, and H. Weinhandl: On the mechanism of fatigue crack propagation in ductile metallic materials. Fatigue Fract. Eng. Mater. Struct. 34, 1 (2010).

    Article  Google Scholar 

  14. P. Lukáš, M. Klesnil, and J. Krejčí: Dislocations and persistent slip bands in copper single crystals fatigued at low stress amplitude. Phys. Status Solidi B 27, 545 (1968).

    Article  Google Scholar 

  15. P. Lukáš and M. Klesnil: Dislocation structures in fatigued single crystals of Cu–Zn system. Phys. Status Solidi A 5, 247 (1971).

    Article  Google Scholar 

  16. H. Mughrabi: The cyclic hardening and saturation behaviour of copper single crystals. Mater. Sci. Eng. 33, 207 (1978).

    Article  CAS  Google Scholar 

  17. U. Essmann, U. Gösele, and H. Mughrabi: A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions. Philos. Mag. A 44, 405 (1981).

    Article  CAS  Google Scholar 

  18. C.E. Feltner and C. Laird: The role of slip character in steady state cyclic stress–strain behavior. Trans. TMS-AIME 245, 1372 (1969).

    CAS  Google Scholar 

  19. R. Wang and H. Mughrabi: Cyclic deformation of face-centred polycrystals: A comparison with observations on single crystals. In Deformation of Polycrystals: Mechanisms and Microstructures: Proceedings of the 2nd Risø International Symposium on Metallurgy and Materials Science, N. Hansen and D.K. Riso, eds. (1981); p. 87.

    Google Scholar 

  20. R. Wang, H. Mughrabi, S. McGovern, and M. Rapp: Fatigue of copper single crystals in vacuum and in air I: Persistent slip bands and dislocation microstructures. Mater. Sci. Eng. 65, 219 (1984).

    Article  CAS  Google Scholar 

  21. P. Lukas and L. Kunz: Role of persistent slip bands in fatigue. Philos. Mag. 84 (3–5), 317 (2004).

    Article  CAS  Google Scholar 

  22. H. Mughrabi, F. Ackermann, and K. Herz: Fatigue mechanisms. In ASTM Special Technical Publication 675, J.T. Fong, ed. (ASTM, Philadelphia, 1978); p. 69.

    Google Scholar 

  23. P. Neumann: Fatigue. In Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasen, eds. (Elsevier, Amsterdam, 1983); part 2, p. 1554.

    Google Scholar 

  24. Z.S. Basinski and S.J. Basinski: Low amplitude fatigue of copper single crystals—II. Surface observations. Acta Metall. 33, 1307 (1985).

    Article  Google Scholar 

  25. C. Laird, P. Charsely, and H. Mughrabi: Low energy dislocation structures produced by cyclic deformation. Mater. Sci. Eng. 81, 433 (1986).

    Article  CAS  Google Scholar 

  26. J. Bach, J.J. Möller, M. Göken, E. Bitzek, and H.W. Höppel: On the transition from plastic deformation to crack initiation in the high- and very high-cycle fatigue regimes in plain carbon steels. Int. J. Fatigue 93, 281 (2016).

    Article  CAS  Google Scholar 

  27. H. Mughrabi, M. Bayerlein, and R. Wang: Direct measurement of the rate of extrusion growth in fatigued copper mono- and polycrystals. In Proceedings of 9th International Conference on Strength of Materials ICSMA-9, D.G. Brandon, R. Chaim, and A. Rosen, eds. (Freund Publishing Company Ltd., London, 1991); p. 879.

    Google Scholar 

  28. H. Mughrabi: Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. A 40, 1257 (2009).

    Article  CAS  Google Scholar 

  29. H. Mughrabi: Damage mechanisms and fatigue lives: From the low to the very high cycle fatigue regime. Procedia Eng. 55, 636 (2013).

    Article  CAS  Google Scholar 

  30. J. Man, M. Petrenec, K. Obrtlík, and J. Polak: AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel. Acta Mater. 52, 5551 (2004).

    Article  CAS  Google Scholar 

  31. R. Wang and H. Mughrabi: Fatigue of copper single crystals in vacuum and in air II: Fatigue crack propagation. Mater. Sci. Eng. 65, 235 (1984).

    Article  CAS  Google Scholar 

  32. P. Neumann: New experiments concerning the slip processes at propagating fatigue cracks. Acta Metall. 22, 1155 (1974).

    Article  CAS  Google Scholar 

  33. G. Dörr and C. Blochwitz: Microcracks in fatigued FCC polycrystals by interaction between persistent slip bands and grain boundaries. Cryst. Res. Technol. 22, 113 (1987).

    Article  Google Scholar 

  34. P. Neumann and A. Tönnessen: Crack initiation at grain boundaries in f.c.c. materials. In Strength of Metals and Alloys (ICSMA 8), P.O. Kettunen, T.K. Lepistö, and M.E. Lehtonen, eds. (Pergamon, Oxford, 1989); p. 743.

    Chapter  Google Scholar 

  35. J. Man, T. Vystavěl, A. Weidner, I. Kuběna, M. Petrenec, T. Kruml, and J. Polák: Study of cyclic strain localization and fatigue crack initiation using FIB-technique. Int. J. Fatigue 39, 44 (2012).

    Article  CAS  Google Scholar 

  36. K. Tanaka and T. Mura: A dislocation model for fatigue crack initiation. J. Appl. Mech. 48, 97 (1981).

    Article  Google Scholar 

  37. T. Mura and Y. Nakasone: A theory of fatigue crack initiation in solids. J. Appl. Mech. 57, 1 (1990).

    Article  Google Scholar 

  38. K. Differt, U. Esmann, and H. Mughrabi: A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip. Philos. Mag. A 54, 237 (1986).

    Article  CAS  Google Scholar 

  39. J. Polák: On the role of point defects in fatigue crack initiation. Mater. Sci. Eng. 92, 71 (1987).

    Article  Google Scholar 

  40. J. Polák and J. Man: Fatigue crack initiation—The role of point defects. Int. J. Fatigue 65, 18 (2014).

    Article  Google Scholar 

  41. D. Stalling, M. Westerhoff, and H-C. Hege: Amira: A highly interactive system for visual data analysis. In The Visualization Handbook, C.D. Hansen and C.R. Johnson, eds. (Elsevier, Amsterdam, 2005); p. 749.

    Chapter  Google Scholar 

  42. E. Schmid and W. Boas: Plasticity of Crystals with Special Reference to Metals (Springer US, Halsted Press, New York, USA, 1968).

    Google Scholar 

  43. J. Polák, J. Man, T. Vystavěl, and M. Petrenec: The shape of extrusions and intrusions and initiation of stage I fatigue cracks. Mater. Sci. Eng., A 517, 204 (2009).

    Article  CAS  Google Scholar 

  44. A. Weidner, R. Beyer, C. Blochwitz, C. Holste, A. Schwab, and W. Tirschler: Slip activity of persistent slip bands in polycrystalline nickel. Mater. Sci. Eng., A 435–436, 540 (2006).

    Article  CAS  Google Scholar 

  45. A. Weidner and W. Skrotzki: Cyclic slip activity of PSBs in bulk and surface grains. Int. J. Fatigue 32, 851 (2010).

    Article  CAS  Google Scholar 

  46. H. Mughrabi and R. Wang: Cyclic stress–strain response and high-cycle fatigue behaviour of copper polycrystals. In Basic Mechanisms in Fatigue, P. Lukáš and J. Polák, eds. (Academia/Elsevier, Amsterdam, 1988); p. 1.

    Google Scholar 

  47. J. Man, P. Klapetek, O. Man, A. Weidner, K. Obrtlík, and J. Polák: Extrusions and intrusions in fatigued metals. Part 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature. Philos. Mag. 89, 1337 (2009).

    Article  CAS  Google Scholar 

  48. R. Zauter, F. Petry, M. Bayerlein, C. Sommer, H.J. Christ, and H. Mughrabi: Electron channelling contrast as a supplementary method for microstructural investigations in deformed metals. Philos. Mag. A 66, 425 (1992).

    Article  CAS  Google Scholar 

  49. J. Ahmed, A.J. Wilkinson, and S.G. Roberts: Electron channeling contrast imaging characterization of dislocation structures associated with extrusion and intrusion systems and fatigue cracks in copper single crystals. Philos. Mag. A 81, 1473 (2001).

    Article  CAS  Google Scholar 

  50. A. Schwab, J. Bretschneider, C. Buque, C. Blochwitz, and C. Holste: Application of electron channelling contrast to the investigation of strain localization effects in cyclically deformed fcc crystals. Philos. Mag. Lett. 74, 449 (1996).

    Article  CAS  Google Scholar 

  51. A. Weidner, C. Blochwitz, W. Skrotzki, and W. Tirschler: Formation of slip steps and growth of extrusions within persistent slip bands in cyclically deformed polycrystals. Mater. Sci. Eng., A 479, 181 (2008).

    Article  CAS  Google Scholar 

  52. K. Mecke and C. Blochwitz: Internal displacements of persistent slip bands in cyclically deformed nickel single crystals. Phys. Status Solidi A 61, K5 (1980).

    Article  CAS  Google Scholar 

  53. H.W. Höppel, Z.M. Zhou, H. Mughrabi, and R.Z. Valiev: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781 (2002).

    Article  Google Scholar 

  54. L.M. Brown and S.L. Ogin: Role of internal stresses in the nucleation of fatigue cracks. In Fundamentals of Deformation and Fracture, J.R. Willis, B.A. Bilby, and K.J. Miller, eds. (Eshelby Memorial Symposium, Cambridge University Press, Cambridge, 1984); p. 501.

    Google Scholar 

  55. S. Brinckmann and E. Van der Giessen: A discrete dislocation dynamics study aiming at understanding fatigue crack initiation. Mater. Sci. Eng., A 387–389, 461 (2004).

    Article  CAS  Google Scholar 

  56. J. Polák: Mechanisms and kinetics of the early fatigue damage in crystalline materials. Mater. Sci. Eng., A 468–470, 33–39 (2007).

    Article  CAS  Google Scholar 

  57. A. Heinz and P. Neumann: Crack initiation during high cycle fatigue of an austenitic steel. Acta Metall. Mater. 38, 1933 (1990).

    Article  CAS  Google Scholar 

  58. L.L. Li, P. Zhang, Z.J. Zhang, H.F. Zhou, S.X. Qu, J.B. Yang, and Z.F. Zhang: Strain localization and fatigue cracking behaviors of Cu bicrystal with an inclined twin boundary. Acta Metall. Mater. 73, 167 (2014).

    Article  CAS  Google Scholar 

  59. Z.J. Zhang, P. Zhang, L.L. Li, and Z.F. Zhang: Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy. Acta Metall. Mater. 60, 3113 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors like to greatly acknowledge the funding by the German Research Council (DFG) within the scope of project Go741/23-2. The authors also gratefully acknowledge the funding of the DFG which, within the framework of its “Excellence Initiative”, supports the Cluster of Excellence “Engineering of Advanced Materials” at the University of Erlangen-Nürnberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Werner Höppel.

Additional information

Dedicated to Prof. Dr. Haël Mughrabi on the occasion of his 80th birthday.

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höppel, H.W., Goik, P., Krechel, C. et al. Ex and in situ investigations on the role of persistent slip bands and grain boundaries in fatigue crack initiation. Journal of Materials Research 32, 4276–4286 (2017). https://doi.org/10.1557/jmr.2017.313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.313

Navigation