Skip to main content
Log in

Thickness effect on fracture behavior of columnar-grained Cu with preferentially oriented nanoscale twins

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of specimen thickness on fracture toughness and fracture mechanism was investigated in bulk columnar-grained Cu with preferentially oriented nanoscale growth twins. Below a critical specimen thickness of ∼1.0 mm, plane stress state prevailed ahead of the crack tip and the fracture initiation toughness JC decreased with decreasing thickness. Above the critical thickness, JC decreased with increasing thickness until approaching an intrinsic thickness-independent value when the crack front was mainly under plane strain condition. Under plane strain condition, threading dislocations were majorly activated to glide along the nanotwin channels and to produce severe stress concentrations when they piled-up against grain boundaries (GBs). As a result, intergranular cracking mediated the failure of the nanotwinned Cu. On the contrary, under plane stress condition, dislocations slipping-transfer across twin boundaries (TBs) or partial dislocations gliding at TBs were activated to accommodate the plastic deformation. Consequently, stress intensification at GBs was plastically relaxed through enhanced detwinning and shear banding, which suppressed the intergranular fracture and promoted transgranular shear fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304 (5669), 422 (2004).

    Article  CAS  Google Scholar 

  2. K. Lu, L. Lu, and S. Suresh: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324 (5925), 349 (2009).

    Article  CAS  Google Scholar 

  3. L. Lu, X. Chen, X. Huang, and K. Lu: Revealing the maximum strength in nanotwinned copper. Science 323 (5914), 607 (2009).

    Article  CAS  Google Scholar 

  4. C.J. Shute, B.D. Myers, S. Xie, T.W. Barbee, Jr., A.M. Hodge, and J.R. Weertman: Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning. Scr. Mater. 60 (12), 1073 (2009).

    Article  CAS  Google Scholar 

  5. C.J. Shute, B.D. Myers, S. Xie, S.Y. Li, T.W. Barbee, Jr., A.M. Hodge, and J.R. Weertman: Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins. Acta Mater. 59 (11), 4569 (2011).

    Article  CAS  Google Scholar 

  6. Z.S. You, L. Lu, and K. Lu: Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins. Acta Mater. 59 (18), 6927 (2011).

    Article  CAS  Google Scholar 

  7. Z.W. Shan, L. Lu, A.M. Minor, E.A. Stach, and S.X. Mao: The effect of twin plane spacing on the deformation of copper containing a high density of growth twins. JOM 60, 71 (2008).

    Article  CAS  Google Scholar 

  8. E.W. Qin, L. Lu, N.R. Tao, J. Tan, and K. Lu: Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles. Acta Mater. 57 (20), 6215 (2009).

    Article  CAS  Google Scholar 

  9. L. Xiong, Z.S. You, and L. Lu: Enhancing fracture toughness of nanotwinned austenitic steel by thermal annealing. Scr. Mater. 119, 55 (2016).

    Article  CAS  Google Scholar 

  10. L. Xiong, Z.S. You, and L. Lu: Fracture behavior of an austenitic stainless steel with nanoscale deformation twins. Scr. Mater. 127, 173 (2017).

    Article  CAS  Google Scholar 

  11. H. Zhou and S. Qu: The effect of nanoscale twin boundaries on fracture toughness in nanocrystalline Ni. Nanotechnology 21 (3), 035706 (2010).

    Article  Google Scholar 

  12. H. Zhou, S. Qu, and W. Yang: Toughening by nano-scaled twin boundaries in nanocrystals. Modell. Simul. Mater. Sci. Eng. 18 (6), 065002 (2010).

    Article  Google Scholar 

  13. L. Liu, J. Wang, S.K. Gong, and S.X. Mao: Atomistic observation of a crack tip approaching coherent twin boundaries. Sci. Rep. 4, 4397 (2014).

    Article  CAS  Google Scholar 

  14. Z. Zeng, X. Li, L. Lu, and T. Zhu: Fracture in a thin film of nanotwinned copper. Acta Mater. 98, 313 (2015).

    Article  CAS  Google Scholar 

  15. S-W. Kim, X. Li, H. Gao, and S. Kumar: In situ observations of crack arrest and bridging by nanoscale twins in copper thin films. Acta Mater. 60 (6–7), 2959 (2012).

    Article  CAS  Google Scholar 

  16. S.S. Luo, Z.S. You, and L. Lu: Intrinsic fracture toughness of bulk nanostructured Cu with nanoscale deformation twins. Scr. Mater. 133, 1 (2017).

    Article  CAS  Google Scholar 

  17. E.W. Qin, L. Lu, N.R. Tao, and K. Lu: Enhanced fracture toughness of bulk nanocrystalline Cu with embedded nanoscale twins. Scr. Mater. 60 (7), 539 (2009).

    Article  CAS  Google Scholar 

  18. T. Zhu and H. Gao: Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling. Scr. Mater. 66 (11), 843 (2012).

    Article  CAS  Google Scholar 

  19. Z. You, X. Li, L. Gui, Q. Lu, T. Zhu, H. Gao, and L. Lu: Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 61 (1), 217 (2013).

    Article  CAS  Google Scholar 

  20. A. Kobler, A.M. Hodge, H. Hahn, and C. Kübel: Orientation dependent fracture behavior of nanotwinned copper. Appl. Phys. Lett. 106 (26), 261902 (2015).

    Article  Google Scholar 

  21. Z. You and L. Lu: Effect of strain rate on tensile ductility and fracture behavior of bulk nanotwinned copper. Adv. Eng. Mater. 17 (12), 1754 (2015).

    Article  CAS  Google Scholar 

  22. D. Jang, X. Li, H. Gao, and J.R. Greer: Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotechnol. 7 (9), 594 (2012).

    Article  CAS  Google Scholar 

  23. X. Zhao, C. Lu, A.K. Tieu, L. Pei, L. Zhang, L. Su, and L. Zhan: Deformation mechanisms in nanotwinned copper by molecular dynamics simulation. Mater. Sci. Eng., A 687, 343 (2017).

    Article  CAS  Google Scholar 

  24. D.C. Bufford, Y.M. Wang, Y. Liu, and L. Lu: Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals. MRS Bull. 41 (7), 286 (2016).

    Article  CAS  Google Scholar 

  25. ASTM E1820-16: Standard Test Method for Measurement of Fracture Toughness (ASTM International, West Conshohocken, PA, 2016). www.astm.org.

    Google Scholar 

  26. M.D. Merz and S.D. Dahlgren: Tensile strength and work hardening of ultrafine-grained high-purity copper. J. Appl. Phys. 46 (8), 3235 (1975).

    Article  CAS  Google Scholar 

  27. A.M. Hodge, Y.M. Wang, and T.W. Barbee, Jr.: Mechanical deformation of high-purity sputter-deposited nano-twinned copper. Scr. Mater. 59 (2), 163 (2008).

    Article  CAS  Google Scholar 

  28. Y. Zhang, N.R. Tao, and K. Lu: Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles. Acta Mater. 56 (11), 2429 (2008).

    Article  CAS  Google Scholar 

  29. M.E. Launey and R.O. Ritchie: On the fracture toughness of advanced materials. Adv. Mater. 21, 2103 (2009).

    Article  CAS  Google Scholar 

  30. A.R. Shahani, M. Rastegar, M. Botshekanan Dehkordi, and H. Moayeri Kashani: Experimental and numerical investigation of thickness effect on ductile fracture toughness of steel alloy sheets. Eng. Fract. Mech. 77 (4), 646 (2010).

    Article  Google Scholar 

  31. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57 (1), 1 (2012).

    Article  CAS  Google Scholar 

  32. Q. Lu, Z. You, X. Huang, N. Hansen, and L. Lu: Dependence of dislocation structure on orientation and slip systems in highly oriented nanotwinned Cu. Acta Mater. 127, 85 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51420105001, 51371171, 51471172, 51401211, and U1608257) and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences. Z.Y. acknowledges financial support by Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161498).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Lu.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., You, Z. & Lu, L. Thickness effect on fracture behavior of columnar-grained Cu with preferentially oriented nanoscale twins. Journal of Materials Research 32, 4554–4562 (2017). https://doi.org/10.1557/jmr.2017.309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.309

Navigation