Skip to main content
Log in

Crack initiation in the very high cycle fatigue regime of nitrided 42CrMo4 steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Surface treatments such as shot peening, deep rolling, or nitriding are known to be very effective for the protection of a surface against fatigue crack initiation, due to surface hardening and residual compressive stresses introduced below the surface. Thus, crack initiation of cyclically loaded materials occurs predominantly at internal nonmetallic inclusions (NMIs). Two different plasma-nitriding treatments were performed on a quenched and tempered 42CrMo4 cast steel. Ultrasonic fatigue tests were performed up to 109 cycles. Resonant frequency and the nonlinearity parameter were recorded in situ during the fatigue tests. Fractographic analyses were performed by means of scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy. The results showed that nitriding, as expected, led to improvements in both fatigue life and rates of internal crack initiation at NMIs. However, the analysis of in situ parameters revealed that internal crack initiation occurred at stress amplitude levels well below the failure stress amplitude even for repeated loading until the run-out limit of 109 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S.E. StanzI-Tschegg, H.R. Mayer, A. Beste, and S. Kroll: Fatigue and fatigue crack propagation in AISi7Mg cast alloys under in-service loading conditions. Int. J. Fatigue 17, 149 (1995).

    Article  Google Scholar 

  2. Y. Murakami, M. Takada, and T. Toriyama: Super-long life tension–compression fatigue properties of quenched and tempered 0.46% carbon steel. Int. J. Fatigue 16, 661 (1998).

    Article  Google Scholar 

  3. S. Nishijima and K. Kanazawai: Stepwise S–N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract. Eng. Mater. Struct. 22, 601 (1999).

    Article  CAS  Google Scholar 

  4. C. Bathias: There is no infinite fatigue life of metallic materials. Fatigue Fract. Eng. Mater. Struct. 22, 559 (1999).

    Article  CAS  Google Scholar 

  5. K.J. Miller and W.J. O’Donnell: The fatigue limit and its elimination. Fatigue Fract. Eng. Mater. Struct. 22, 545 (1999).

    Article  CAS  Google Scholar 

  6. J.M. Morgan and W.W. Milligan: 1 kHz servohydraulic fatigue testing system. In High Cycle Fatigue of Structural Materials, W.O. Soboyejo and T.S. Srivatsan, eds. (TMS, Warrendale, PA, 1997); p. 305.

    Google Scholar 

  7. S.E. Stanzl-Tschegg: Ultrasonic fatigue. In K.H.J. Buschow, R. Cahn, M. Flemings, B. Ilschner, E. Kramer, S. Mahajan, and P. Veyssiere, eds. Encyclopedia of Materials: Science and Technology (Elsevier, New York, 2001); p. 9444, ISBN: 0-08-0431526.

    Chapter  Google Scholar 

  8. Y. Murakami, T. Nomoto, and T. Ueda: Factors influencing the mechanism of superlong fatigue failure in steels. Fatigue Fract. Eng. Mater. Struct. 22, 581 (1999).

    Article  CAS  Google Scholar 

  9. Q.Y. Wang, J.Y. Berard, A. Dubarre, G. Baudry, S. Rathery, and C. Bathias: Gigacycle fatigue of ferrous alloys. Fatigue Fract. Eng. Mater. Struct. 22, 667 (1999).

    Article  CAS  Google Scholar 

  10. H. Mughrabi: On the “multi-stage” fatigue life diagrams and the relevant life-controlling mechanisms in ultra-high cycle fatigue. Fatigue Fract. Eng. Mater. Struct. 25, 755 (2002).

    Article  Google Scholar 

  11. T. Naito, H. Ueda, and M. Kikuchi: Fatigue behavior of carburized steel with internal oxides and non-martensitic microstructure near the surface. Metall. Trans. A 15, 1431 (1983).

    Article  Google Scholar 

  12. D. Wagner, N. Ranc, C. Bathias, and P. Paris: Fatigue crack initiation detection by an infrared thermography method. Fatigue Fract. Eng. Mater. Struct. 33, 12 (2009).

    Google Scholar 

  13. K. Tanaka and Y. Akiniwa: Fatigue crack propagation behaviour derived from S–N data in very high cycle regime. Fatigue Fract. Eng. Mater. Struct. 25, 775 (2002).

    Article  CAS  Google Scholar 

  14. T. Sakai, Y. Sato, Y. Nagano, M. Takeda, and N. Oguma: Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading. Int. J. Fatigue 28, 1547 (2006).

    Article  CAS  Google Scholar 

  15. Y. Murakami and Y. Yamashita: Prediction of life and scatter of fatigue failure originated at nonmetallic inclusions. Procedia Eng. 74, 6 (2014).

    Article  CAS  Google Scholar 

  16. C. Klinger and D. Bettge: Axle fracture of an ICE3 high speed train. Eng. Failure Anal. 35A, 66 (2013).

    Article  CAS  Google Scholar 

  17. U. Zerbst, S. Beretta, G. Köhler, A. Lawton, M. Vormwald, H.T. Beier, C. Klinger, I. Černý, J. Rudlin, T. Heckel, and D. Klingbeil: Safe life and damage tolerance aspects of railway axles—A review. Eng. Fract. Mech. 98, 214 (2013).

    Article  Google Scholar 

  18. M-M. Song, B. Song, W.B. Xin, G.L. Sun, G.Y. Song, and C-L. Hu: Effects of rare earth addition on microstructure of C–Mn steel. Ironmaking Steelmaking 42, 594 (2015).

    Article  CAS  Google Scholar 

  19. L. Zhang: Nucleation, growth, transport and entrapment of inclusions during steel casting. JOM 65, 1138 (2013).

    Article  CAS  Google Scholar 

  20. L. Zhang and B.G. Thomas: State of the art in the control of inclusions during steel ingot casting. Metall. Mater. Trans. B 37, 733 (2005).

    Article  Google Scholar 

  21. L. Zhang: Fluid flow and inclusion removal in molten steel continuous casting strands. In Fifth International Conference on CFD in the Process Industries (CSIRO, Melbourne, Australia, 2006), pp. 13–15.

    Google Scholar 

  22. N.N. Tripathi, N. Nzotta, A. Sandberg, and D. Sichen: Effect of ladle age on formation of non-metallic inclusions in ladle treatment. Ironmaking Steelmaking 31, 235 (2004).

    Article  CAS  Google Scholar 

  23. L. Zhang, S. Taniguchi, and K. Cai: Fluid flow and inclusion removal in continuous casting tundish. Metall. Mater. Trans. B 31, 253 (2000).

    Article  Google Scholar 

  24. C. Shi, W-T. Yu, H. Wang, J. Li, and M. Jiang: Simultaneous modification of alumina and MgO·Al2O3 inclusions by calcium treatment during electroslag remelting of stainless tool steel. Metall. Mater. Trans. B 48, 146 (2017).

    Article  CAS  Google Scholar 

  25. K. Uemura, M. Takahashi, S. Koyama, and M. Nitta: Filtration mechanism of non-metallic inclusions in steel by ceramic loop filter. ISIJ Int. 32, 150 (1992).

    Article  CAS  Google Scholar 

  26. M. Emmel and C.G. Aneziris: Development of novel carbon bonded filter compositions for steel melt filtration. Ceram. Int. 38, 5165 (2012).

    Article  CAS  Google Scholar 

  27. M. Emmel, C.G. Aneziris, G. Schmidt, D. Krewerth, and H. Biermann: Influence of the chemistry of surface functionalized ceramic foam filters on the filtration of alumina inclusions in steel melts. Adv. Eng. Mater. 15, 1188 (2013).

    Article  CAS  Google Scholar 

  28. Y. Furuya, S. Matsuoka, and T. Abe: A novel inclusion inspection method employing 20 kHz fatigue testing. Metall. Mater. Trans. A 34, 25217 (2003).

    Article  Google Scholar 

  29. D. Krewerth, T. Lippmann, A. Weidner, and H. Biermann: Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime. Int. J. Fatigue 84, 40 (2016).

    Article  CAS  Google Scholar 

  30. M. Torres and H. Voorwald: An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int. J. Fatigue 24, 877 (2002).

    Article  CAS  Google Scholar 

  31. P.R. Prabhu, S.M. Kulkarni, and S.S. Sharma: Influence of deep cold rolling and low plasticity burnishing on surface hardness and surface roughness of AISI 4140 steel. World Acad. Sci. Eng. Technol. 72, 619 (2010).

    Google Scholar 

  32. K. Genel, M. Demirkol, and M. Çapa: Effect of ion nitriding on fatigue behaviour of AISI 4140 steel. Mater. Sci. Eng., A 279, 207 (2000).

    Article  Google Scholar 

  33. A. Çelik and S. Karadeniz: Improvement of the fatigue strength of AISI 4140 steel by an ion nitriding process. Surf. Coat. Technol. 72, 169 (1995).

    Article  Google Scholar 

  34. S.Y. Sirin, K. Sirin, and E. Kaluc: Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel. Mater. Charact. 59, 351 (2008).

    Article  CAS  Google Scholar 

  35. M.A. Terres, N. Laalai, and H. Sidhom: Effect of nitriding and shot-peening on the fatigue behavior of 42CrMo4 steel: Experimental analysis and predictive approach. Mater. Des. 35, 741 (2012).

    Article  CAS  Google Scholar 

  36. H-J. Spies and A. Dalke: Case structure and properties of nitrided steels. In M.S.J. Hashimi, ed., Comprehensive Materials Processing, 1st ed. (Elsevier Books, Amsterdam, 2014); p. 439.

    Chapter  Google Scholar 

  37. H. Kovacı, A. Yetim, Ö. Baran, and A. Çelik: Fatigue crack growth analysis of plasma nitrided AISI 4140 low-alloy steel: Part 1-constant amplitude loading. Mater. Sci. Eng., A 672, 257 (2016).

    Article  CAS  Google Scholar 

  38. A. Bäumel and T. Seeger: Thick surface layer model—Life calculation for specimens with residual stress distribution and different material zones. In G. Beck, S. Denis, and A. Simon, eds. Proceedings of the Second International Conference on Residual Stresses held in Nancy, France, 23–25 November 1988 (Elsevier, London, England, 1989); pp. 809–814.

    Google Scholar 

  39. A. Kumar, C.J. Torbet, J. Wayne Jones, and T.M. Pollock: Nonlinear ultrasonics for in situ damage detection during high frequency fatigue. J. Appl. Phys. 106, 024904 (2009).

    Article  CAS  Google Scholar 

  40. A. Kumar, C.J. Torbet, T.M. Pollock, and J.W. Jones: In situ characterization of fatigue damage evolution in a cast Al alloy via nonlinear ultrasonic measurements. Acta Mater. 58, 2143 (2010).

    Article  CAS  Google Scholar 

  41. D. Krewerth, T. Lippmann, A. Weidner, and H. Biermann: Application of full-surface view in situ thermography measurements during ultrasonic fatigue of cast steel G42CrMo4. Int. J. Fatigue 80, 459 (2015).

    Article  CAS  Google Scholar 

  42. S.E. Stanzl-Tschegg: Fracture mechanisms and fracture mechanics at ultrasonic frequencies. Fatigue Fract. Eng. Mater. Struct. 22, 567 (1999).

    Article  CAS  Google Scholar 

  43. H. Mayer: Ultrasonic torsion and tension–compression fatigue testing: Measuring principles and investigations on 2024-T351 aluminium alloy. Int. J. Fatigue 28, 1446 (2006).

    Article  CAS  Google Scholar 

  44. J.H. Cantrell and W.T. Yost: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, 487 (2001).

    Article  Google Scholar 

  45. H. Mayer, M. Fitzka, and R. Schuller: Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios. Ultrasonics 53, 1425 (2013).

    Article  CAS  Google Scholar 

  46. W. Li, H. Cui, W. Wen, X. Su, and C.C. Engler-Pinto, Jr.: In situ non-linear ultrasonic for very high cycle fatigue damage characterization of a cast aluminium alloy. Mater. Sci. Eng., A 645, 248 (2015).

    Article  CAS  Google Scholar 

  47. M. Guagliano and I. Fernandez Pariente: About the role of residual stresses and surface work hardening on fatigue Δ Kth of a nitrided and shot peened low-alloy steel. Surf. Coat. Technol. 202, 3072 (2008).

    Article  CAS  Google Scholar 

  48. M.A. Terres and H. Sidhom: Fatigue life evaluation of 42CrMo4 nitrided steel by local approach: Equivalent strain-life-time. Mater. Des. 33, 444 (2012).

    Article  CAS  Google Scholar 

  49. Y. Murakami and S. Beretta: Small defects and inhomogeneities in fatigue strength: Experiments, models and statistical implications. Extremes 2, 123 (1999).

    Article  Google Scholar 

  50. Y. Murakami: Metal Fatigue: Effects of Small Defects and Non-metallic Inclusions (Elsevier Ltd., Amsterdam, 2002).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the German Research Foundation (DFG) for its financial support of the Collaborative Research Center CRC 920, subproject C04. In addition, the authors would like to thank Mr. G. Franke (Institute of Iron and Steel Technology, TU Bergakademie Freiberg) for the two-step heat treatment. E. Siegismund, Dr. A. Dalke, and Prof. H-J. Spies (Institute of Materials Engineering, TU Bergakademie Freiberg) are gratefully acknowledged for the plasma nitriding of fatigue specimens and helpful discussions, respectively. Sincere thanks also to Prof. T. Niendorf and Dr. W. Zinn (Institute of Materials Engineering, University of Kassel) for their measurements and discussions on residual stresses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Weidner.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidner, A., Lippmann, T. & Biermann, H. Crack initiation in the very high cycle fatigue regime of nitrided 42CrMo4 steel. Journal of Materials Research 32, 4305–4316 (2017). https://doi.org/10.1557/jmr.2017.308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.308

Navigation