Skip to main content
Log in

The size effect in the mechanical strength of semiconductors and metals: Strain relaxation by dislocation-mediated plastic deformation

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The Ph.D. work of Jan H. van der Merwe in 1949 established a new paradigm for the understanding of dislocation dynamics in restricted volumes. This led to a comprehensive understanding of plasticity, or strain relaxation, in the context of strained-layer semiconductor structures. However, this understanding was largely overlooked in the context of traditional metallurgy and micromechanics. We identify four reasons for this, the apparent need for an unstrained substrate in van der Merwe’s theory, the supposed inapplicability to strain gradients, the supposed inapplicability to the Hall–Petch effect (dependence of strength on the inverse square root of grain size), and an emphasis on understanding strain hardening rather than the yield point. Addressing these four points in particular, here it is shown how the insights of van der Merwe and of the earlier work by Lawrence Bragg lead to a coherent and unified view of the size-effect phenomena ranging from the Hall–Petch effect to the strain-gradient plasticity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2

Similar content being viewed by others

References

  1. V. Volterra: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. École Norm. Sup. 24, 401 (1907).

    Article  Google Scholar 

  2. G.I. Taylor: The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. London, Ser. A 145, 362 (1934).

    Article  CAS  Google Scholar 

  3. E. Orowan: Zur Kristallplastizität. III. Über den Mechanismus des Gleitvorganges. Z. Phys. 89, 634 (1934).

    Article  Google Scholar 

  4. M. Polanyi: Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Z. Phys. 89, 660 (1934).

    Article  CAS  Google Scholar 

  5. F.C. Frank and J.H. van der Merwe: One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth. Proc. R. Soc. London, Ser. A 198, 216 (1949).

    Article  CAS  Google Scholar 

  6. J.H. van der Merwe: Misfitting monolayers and oriented overgrowths. Discuss. Faraday Soc. 5, 201 (1949).

    Article  Google Scholar 

  7. Y. Li, A.J. Bushby, and D.J. Dunstan: The Hall–Petch effect as a manifestation of the general size effect. Proc. R. Soc. A 472, 20150890 (2016).

    Article  CAS  Google Scholar 

  8. W.L. Bragg: A theory of the strength of metals. Nature 149, 511 (1942).

    Article  Google Scholar 

  9. E.O. Hall: The deformation and ageing of mild steel: III discussion of results. Proc. R. Soc. B 64, 747 (1951).

    Google Scholar 

  10. N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  11. A. Kelly: Lawrence Bragg’s interest in the deformation of metals and 1950–1953 in the Cavendish—A worm’s-eye view. Acta Crystallogr., Sect. A: Found. Crystallogr. 69, 16 (2013).

    Article  CAS  Google Scholar 

  12. W.L. Bragg: The strength of metals. Math. Proc. Cambridge Philos. Soc. 45, 125 (1949).

    Article  Google Scholar 

  13. D. Kuhlmann-Wilsdorf: The impact of F.R.N. Nabarro on the LEDS theory of workhardening. Prog. Mater. Sci. 54, 707 (2009).

    Article  CAS  Google Scholar 

  14. J.W. Matthews and J.L. Crawford: Accomodation of misfit between single-crystal films of nickel and copper. Thin Solid Films 5, 187 (1970).

    Article  CAS  Google Scholar 

  15. J.W. Matthews and W.A. Jesser: Experimental evidence for pseudomorphic growth of platinum on gold. Acta Metall. 15, 595 (1967).

    Article  CAS  Google Scholar 

  16. J.W. Matthews and E. Klokholm: Fracture of brittle epitaxial films under the influence of misfit stress. Mater. Res. Bull. 7, 213 (1972).

    Article  CAS  Google Scholar 

  17. J.W. Matthews and A.E. Blakeslee: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974).

    CAS  Google Scholar 

  18. Available at: http://www.manchester.ac.uk/discover/news/two-university-of-manchester-discoveries-in-the-top-ten-of-all-time (accessed March 31, 2017).

  19. R. People and J.C. Bean: Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures. Appl. Phys. Lett. 47, 322 (1985).

    Article  CAS  Google Scholar 

  20. A.V. Drigo, A. Aydinli, A. Carnera, F. Genova, C. Rigo, C. Ferrari, P. Franzosi, and G. Salviati: On the mechanisms of strain release in molecular-beam-epitaxy-grown InxGa1−xAs/GaAs single heterostructures. J. Appl. Phys. 66, 1975 (1989).

    Article  CAS  Google Scholar 

  21. D.J. Dunstan: Strain and strain relaxation in semiconductors. J. Mater. Sci.: Mater. Electron. 8, 337 (1997).

    CAS  Google Scholar 

  22. J.D. Eshelby, F.C. Frank, and F.R.N. Nabarro: The equilibrium of linear arrays of dislocations. Philos. Mag. 42, 351 (1951).

    Article  Google Scholar 

  23. J.H. van der Merwe: Strains in crystalline overgrowths. Philos. Mag. 7, 1433 (1962).

    Article  Google Scholar 

  24. D. Kuhlmann-Wilsdorf and J.H. van der Merwe: Theory of dislocation cell sizes in deformed metals. Mater. Sci. Eng. 55, 79 (1982).

    Article  Google Scholar 

  25. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  26. C.V. Thompson: The yield stress of polycrystalline thin films. J. Mater. Res. 8, 237 (1993).

    Article  Google Scholar 

  27. W.C. Unwin: The Testing of Materials of Construction (Longmans, Green, and Co., London, 1888).

    Google Scholar 

  28. S.S. Brenner: Tensile strength of whiskers. J. Appl. Phys. 27, 1484 (1956).

    Article  CAS  Google Scholar 

  29. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).

    Article  CAS  Google Scholar 

  30. S. Korte and W.J. Clegg: Discussion of the dependence of the effect of size on the yield stress in hard materials studied by microcompression of MgO. Philos. Mag. 91, 1150 (2010).

    Article  CAS  Google Scholar 

  31. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475 (1994).

    Article  CAS  Google Scholar 

  32. J.S. Stölken and A.G. Evans: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109 (1998).

    Article  Google Scholar 

  33. M.F. Ashby: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 (1970).

    Article  CAS  Google Scholar 

  34. J.M.C. Li: Petch relation and grain boundary sources. Trans. TMS 227, 239 (1963).

    CAS  Google Scholar 

  35. H. Conrad: Effect of grain size on the lower yield and flow stress on iron and steel. Acta Metall. 11, 75 (1963).

    Article  Google Scholar 

  36. X. Zhang and K. Aifantis: Interpreting the internal length scale in strain gradient plasticity. Rev. Adv. Mater. Sci. 41, 72 (2015).

    Google Scholar 

  37. W.D. Nix and H.J. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  38. A.G. Evans and J.W. Hutchinson: A critical assessment of theories of strain gradient plasticity. Acta Mater. 57, 1675 (2009).

    Article  CAS  Google Scholar 

  39. R. Beanland: Dislocation multiplication mechanisms in low-misfit strained epitaxial layers. J. Appl. Phys. 77, 6217 (1995).

    Article  CAS  Google Scholar 

  40. D.J. Dunstan, B. Ehrler, R. Bossis, S. Joly, K.M.Y. P’ng, and A.J. Bushby: Elastic limit and strain-hardening of thin wires in torsion. Phys. Rev. Lett. 103, 155501 (2009).

    Article  CAS  Google Scholar 

  41. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2007).

    Article  CAS  Google Scholar 

  42. J.R. Greer and W.D. Nix: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

    Article  CAS  Google Scholar 

  43. J. Tersoff: Dislocations and strain relief in compositionally graded layers. Appl. Phys. Lett. 62, 693 (1993).

    Article  Google Scholar 

  44. C. Motz and D.J. Dunstan: Observation of the critical thickness phenomenon in dislocation dynamics simulation of microbeam bending. Acta Mater. 60, 1603 (2012).

    Article  CAS  Google Scholar 

  45. N.A. Fleck and J.W. Hutchinson: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825 (1993).

    Article  Google Scholar 

  46. E.C. Aifantis: The physics of plastic deformation. Int. J. Plast. 3, 211 (1987).

    Article  Google Scholar 

  47. D.J. Dunstan: Validation of a phenomenological strain-gradient plasticity theory. Philos. Mag. Lett. 96, 305 (2016).

    Article  CAS  Google Scholar 

  48. D. Liu and D.J. Dunstan: Material length scale of strain gradient plasticity: A physical interpretation. Int. J. Plast. (2017). (in press).

    Google Scholar 

  49. D.J. Dunstan and A.J. Bushby: The scaling exponent in the size effect of small scale plastic deformation. Int. J. Plast. 40, 152 (2013).

    Article  Google Scholar 

  50. W.M. Baldwin: Yield strength of metals as a function of grain size. Acta Metall. 6, 139 (1958).

    Article  Google Scholar 

  51. J.W. Aldrich and R.W. Armstrong: The grain size dependence of the yield, flow and fracture stress of commercial purity silver. Metall. Trans. 1, 2547 (1970).

    CAS  Google Scholar 

  52. D.J. Dunstan and A.J. Bushby: Grain size dependence of the strength of metals: The Hall–Petch effect does not scale as the inverse square root of grain size. Int. J. Plast. 53, 56 (2014).

    Article  Google Scholar 

  53. Y. Li, A.J. Bushby, and D.J. Dunstan: Quantitative explanation of the reported values of the Hall–Petch parameter. (unpublished).

  54. S.B. Nissen, T. Magidson, K. Gross, and C.T. Bergstrom: Publication bias and the canonization of false facts. eLife 5, e21451 (2016).

    Article  Google Scholar 

  55. T. Narutani and J. Takamura: Grain-size strengthening in terms of dislocation density measured by resistivity. Acta Metall. Mater. 39, 2037 (1991).

    Article  CAS  Google Scholar 

  56. L.M. Brown: Indentation size effect and the Hall–Petch ‘law’. Mater. Sci. Forum 662, 13 (2011).

    Article  Google Scholar 

  57. A.S. Argon: Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, Oxford, U.K. 2008); ch. 8.8.

    Google Scholar 

  58. A.W.F. Edwards: Likelihood (Cambridge University Press, 1972; John Hopkins University Press, Baltimore, 1992).

    Google Scholar 

  59. D. Dong, D.J. Dunstan, and A.J. Bushby: Plasticity and thermal recovery of thin copper wires in torsion. Philos. Mag. 95, 1739 (2015).

    Article  CAS  Google Scholar 

  60. M. Walter and O. Kraft: A new method to measure torsion moments on small-scaled specimens. Rev. Sci. Instrum. 82, 035109 (2011).

    Article  CAS  Google Scholar 

  61. D. Liu, Y. He, D.J. Dunstan, B. Zhang, Z. Gan, P. Hu, and H. Ding: Anomalous plasticity in the cyclic torsion of micron scale metallic wires. Phys. Rev. Lett. 110, 244301 (2013).

    Article  CAS  Google Scholar 

  62. B. Ehrler, X.D. Hou, T.T. Zhu, K.M.Y. P’ng, C.J. Walker, A.J. Bushby, and D.J. Dunstan: Grain size and sample size interact to determine strength in a soft metal. Philos. Mag. 88, 3043 (2008).

    Article  CAS  Google Scholar 

  63. R.M. Douthwaite: Relationship between the hardness, flow stress, and grain size of metals. J. Iron Steel Inst. 208, 265 (1970).

    CAS  Google Scholar 

  64. H. Bei, S. Shim, G.M. Pharr, and E.P. George: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).

    Article  CAS  Google Scholar 

  65. J. Weiss, W. Ben Rhouma, T. Richeton, S. Dechanel, F. Louchet, and L. Truskinovsky: From mild to wild fluctuations in crystal plasticity. Phys. Rev. Lett. 114, 105504 (2015).

    Article  CAS  Google Scholar 

  66. C.R. Weinberger and W. Cai: Plasticity of metal wires in torsion: Molecular dynamics and dislocation dynamics simulations. J. Mech. Phys. Solids 58, 1011 (2010).

    Article  CAS  Google Scholar 

  67. M.E. Brenchley, M. Hopkinson, A. Kelly, P. Kidd, and D.J. Dunstan: Coherency strain as an athermal strengthening mechanism. Phys. Rev. Lett. 78, 3912 (1997).

    Article  CAS  Google Scholar 

  68. F. Kümmel, M. Kreuz, T. Hausöl, H.W. Höppel, and M. Göken: Microstructure and mechanical properties of accumulative roll-bonded AA1050A/AA5005 laminated metal composites. Metals 6, 56 (2016).

    Article  Google Scholar 

  69. R.O. Ritchie: The conflicts between strength and toughness. Nat. Mater. 10, 817 (2011).

    Article  CAS  Google Scholar 

  70. W.P. Gillin, D.J. Dunstan, K.P. Homewood, L.K. Howard, and B.J. Sealy: Interdiffusion in InGaAs/GaAs quantum well structures as a function of depth. J. Appl. Phys. 73, 3782 (1993).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am indebted to too many collaborators, co-authors and colleagues to acknowledge them all by name, but particular mention must be made of Andy Bushby and the late Tony Kelly, responsible for shifting my interest from semiconductors to include metals, and of Ron Armstrong, Mick Brown, Bill Nix, and the late Tony Evans, whose friendly interest and knowledge of the field has been indispensable whether or not they agree with my conclusions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Dunstan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunstan, D.J. The size effect in the mechanical strength of semiconductors and metals: Strain relaxation by dislocation-mediated plastic deformation. Journal of Materials Research 32, 4041–4053 (2017). https://doi.org/10.1557/jmr.2017.300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.300

Navigation