Skip to main content
Log in

Thermal processing and enthalpy storage of a binary amorphous solid: A molecular dynamics study

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using very long molecular dynamics simulations of duration up to a microsecond of physical time, temperature protocols spanning up to five orders of magnitude in time are performed to investigate thermally activated structural relaxation in a model binary amorphous solid. The simulations demonstrate significant local structural excitations (LSE) as a function of increasing temperature and show that enthalpy rather than internal potential energy is primarily responsible for relaxation. At low temperatures these LSE involve atoms whose displacements are smaller than a typical bond length, whereas at higher temperatures approaching that of the glass transition regime, bond-length displacements occur in the form of string-like motion where one atom replaces the position of another. Such thermally activated excitations are observed to mainly involve the smaller atom type. The observed enthalpy changes can be correlated with the level of internal hydrostatic stress homogenization and icosahedral content within the glassy solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  2. T.C. Hufnagel, C.A. Schuh, and M.L. Falk: Acta materialia deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Mater. 109, 375 (2016).

    Article  CAS  Google Scholar 

  3. C.A. Pampillo: Localized shear deformation in a glassy metal. Scr. Metall. 6, 915 (1972).

    Article  CAS  Google Scholar 

  4. H.J. Leamy, H.S. Chen, and T.T. Wang: Plastic flow and fracture of metallic glass. Metall. Trans. 3, 699 (1972).

    Article  CAS  Google Scholar 

  5. Y.H. Sun, A. Concustell, and A.L. Greer: Rejuvenation of metallic glasses by non-affine thermal strain. Nat. Rev. 1, 1 (2016).

    Google Scholar 

  6. S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, and A.L. Greer: Rejuvenation of metallic glasses by non-affine thermal strain. Nature 200, 524 (2015).

    Google Scholar 

  7. A.L. Greer and Y.H. Sun: Stored energy in metallic glasses due to strains within the elastic limit. Philos. Mag. 96, 1643 (2016).

    Article  CAS  Google Scholar 

  8. S. Küchemann and R. Maass: Gamma relaxation in bulk metallic glasses. Scr. Mater. 137, 5 (2017).

    Article  CAS  Google Scholar 

  9. F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  10. A. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  11. M.L. Falk and J.S. Langer: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).

    Article  CAS  Google Scholar 

  12. M.L. Falk and J.S. Langer: Deformation and failure of amorphous, solidlike materials. Annu. Rev. Condens. Matter Phys. 2, 353 (2011).

    Article  CAS  Google Scholar 

  13. J.D. Eshelby: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241, 376 (1957).

    Google Scholar 

  14. V.V. Bulatov and A.S. Argon: A stochastic model for continuum elasto-plastic behavior. I. Numerical approach and strain localization. Modell. Simul. Mater. Sci. Eng. 2, 167 (1994).

    Article  Google Scholar 

  15. V.V. Bulatov and A.S. Argon: A stochastic model for continuum elasto-plastic behavior. II. A study of the glass transition and structural relaxation. Modell. Simul. Mater. Sci. Eng. 2, 185 (1994).

    Article  Google Scholar 

  16. V.V. Bulatov and A.S. Argon: A stochastic model for continuum elasto-plastic behavior. III. Plasticity in ordered versus disordered solids. Modell. Simul. Mater. Sci. Eng. 2, 203 (1994).

    Article  Google Scholar 

  17. E.R. Homer and C.A. Schuh: Mesoscale modeling of amorphous metals by shear transformation zone dynamics. Acta Mater. 57, 2823 (2009).

    Article  CAS  Google Scholar 

  18. E.R. Homer and C.A. Schuh: Three-dimensional shear transformation zone dynamics model for amorphous metals. Modell. Simul. Mater. Sci. Eng. 18, 065009 (2010).

    Article  CAS  Google Scholar 

  19. L. Li, E.R. Homer, and C.A. Schuh: Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable. Acta Mater. 61, 3347 (2013).

    Article  CAS  Google Scholar 

  20. C.E. Maloney and A. Lemaître: Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow. Phys. Rev. Lett. 93, 016001 (2004).

    Article  CAS  Google Scholar 

  21. Y. Shi and M.L. Falk: Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005).

    Article  CAS  Google Scholar 

  22. M.J. Demkowicz and A.S. Argon: Liquidlike atomic environments act as plasticity carriers in amorphous silicon. Phys. Rev. B 72, 245205 (2005).

    Article  CAS  Google Scholar 

  23. D. Rodney, A. Tanguy, and D. Vandembroucq: Modeling the mechanics of amorphous solids at different length scale and time scale. Modell. Simul. Mater. Sci. Eng. 19, 083001 (2011).

    Article  CAS  Google Scholar 

  24. R. Maaß, D. Klaumüzer, and J.F. Löffler: Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater. 59, 3205 (2011).

    Article  CAS  Google Scholar 

  25. R. Maaß, D. Klaumüzer, G. Villard, P.M. Derlet, and J.F. Löffler: Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass. Appl. Phys. Lett. 100, 071904 (2012).

    Article  CAS  Google Scholar 

  26. D. Tönnies, K. Samwer, P.M. Derlet, C.A. Volkert, and R. Maaß: Rate-dependent shear-band initiation in a metallic glass. Appl. Phys. Lett. 106, 171907 (2015).

    Article  CAS  Google Scholar 

  27. R. Maaß and J.F. Löffler: Shear-band dynamics in metallic glasses. Adv. Funct. Mater. 25, 2353 (2015).

    Article  CAS  Google Scholar 

  28. G.T. Barkema and N. Mousseau: Event-based relaxation of continuous disordered systems. Phys. Rev. Lett. 77, 4358 (1996).

    Article  CAS  Google Scholar 

  29. N. Mousseau and G.T. Barkema: Traveling through potential energy landscapes of disordered materials: The activation-relaxation technique. Phys. Rev. E 57, 2419 (1998).

    Article  CAS  Google Scholar 

  30. R.A. Olsen, G.J. Kroes, G. Henkelman, A. Arnaldsson, and H. Jónsson: Comparison of methods for finding saddle points without knowledge of the final states. J. Chem. Phys. 121, 9776 (2004).

    Article  CAS  Google Scholar 

  31. D. Rodney and C.A. Schuh: Distribution of thermally activated plastic events in a flowing glass. Phys. Rev. Lett. 102, 235503 (2009).

    Article  CAS  Google Scholar 

  32. D. Rodney and C.A. Schuh: Yield stress in metallic glasses: The jamming–unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique. Phys. Rev. B 80, 184203 (2009).

    Article  CAS  Google Scholar 

  33. H. Kallel, N. Mousseau, and F. Schiettekatte: Evolution of the potential-energy surface of amorphous silicon. Phys. Rev. Lett. 105, 045503 (2010).

    Article  CAS  Google Scholar 

  34. P. Koziatek, J-L. Barrat, P.M. Derlet, and D. Rodney: Inverse Meyer-Neldel behavior for activated processes in model glasses. Phys. Rev. B 87, 224105 (2013).

    Article  CAS  Google Scholar 

  35. S. Swayamjyoti, J.F. Löffler, and P.M. Derlet: Local structural excitations in model glasses. Phys. Rev. B 89, 224201 (2014).

    Article  Google Scholar 

  36. Y. Fan, T. Iwashita, and T. Egami: How thermally activated deformation starts in metallic glass. Nat. Commun. 5, 5083 (2014).

    Article  CAS  Google Scholar 

  37. Y. Fan, T. Iwashita, and T. Egami: Crossover from localized to cascade relaxations in metallic glasses. Phys. Rev. Lett. 115, 045501 (2015).

    Article  CAS  Google Scholar 

  38. S. Swayamjyoti, J.F. Löffler, and P.M. Derlet: Local structural excitations in model glass systems under applied load. Phys. Rev. B 93, 144202 (2016).

    Article  CAS  Google Scholar 

  39. G. Wahnström: Molecular-dynamics study of a supercooled two-component Lennard-Jones system. Phys. Rev. A 44, 3752 (1991).

    Article  Google Scholar 

  40. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995). Available at: http://lammps.sandia.gov.

    Article  CAS  Google Scholar 

  41. R.E. Baumer and M.J. Demkowicz: Glass transition by gelation in a phase separating binary alloy. Phys. Rev. Lett. 110, 145502 (2013).

    Article  CAS  Google Scholar 

  42. P.M. Derlet, R. Maaß, and J.F. Löffler: The boson peak of model glass systems and its relation to atomic structure. Eur. Phys. J. B 85, 148 (2012).

    Article  CAS  Google Scholar 

  43. H.S. Chen and E. Coleman: Structure relaxation spectrum of metallic glasses. Appl. Phys. Lett. 28, 245 (1976).

    Article  CAS  Google Scholar 

  44. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).

    Article  CAS  Google Scholar 

  45. J. Ding, Y-Q. Cheng, and E. Ma: Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid. Acta Mater. 69, 343 (2014).

    Article  CAS  Google Scholar 

  46. A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  47. C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H. Poole, and S.C. Glotzer: Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338 (1998).

    Article  CAS  Google Scholar 

  48. T.B. Schröder, S. Sastry, J.C. Dyre, and S.C. Glotzer: Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid. J. Chem. Phys. 112, 9834 (2000).

    Article  Google Scholar 

  49. Y. Gebremichael, M. Vogel, and S.C. Glotzer: Particle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquid. J. Chem. Phys. 120, 4415 (2004).

    Article  CAS  Google Scholar 

  50. M. Vogel, B. Doliwa, A. Heuer, and S.C. Glotzer: Particle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid. J. Chem. Phys. 120, 4404 (2004).

    Article  CAS  Google Scholar 

  51. T. Kawasaki and A. Onuki: Dynamics of thermal vibrational motions and stringlike jump motions in three-dimensional glass-forming liquids. J. Chem. Phys. 138, 12A514 (2013).

    Article  CAS  Google Scholar 

  52. F. Faupel, W. Frank, M-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H.R. Schober, S.K. Sharma, and H. Teichler: Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 75, 237 (2003).

    Article  Google Scholar 

  53. H.R. Schober, C. Gaukel, and C. Oligschleger: Low energy excitations in glasses and melts. Prog. Theor. Phys. Suppl. 126, 67 (1997).

    Article  CAS  Google Scholar 

  54. C. Oligschleger and H.R. Schober: Collective jumps in a soft-sphere glass. Phys. Rev. B 59, 811 (1999).

    Article  CAS  Google Scholar 

  55. H. Teichler: Structural dynamics on the us scale in molecular-dynamics simulated, deeply undercooled, glass forming Ni0.5Zr0.5. J. Non-Cryst. Solids 293, 339 (2001).

    Article  Google Scholar 

  56. M.P. Ciamarra, R. Pastore, and A. Coniglio: Particle jumps in structural glasses. Soft Matter 12, 358 (2016).

    Article  CAS  Google Scholar 

  57. L. Battezzati, G. Riontino, M. Baricco, A. Lucci, and F.A. Marino: DSC study of structural relaxation in metallic glasses prepared with different quenching rates. J. Non-Cryst. Solids 61–62, 877 (1984).

    Article  Google Scholar 

  58. J. Pan, Q. Chen, L. Liu, and Y. Li: Softening and dilatation in a single shear band. Acta Mater. 59, 5146 (2011).

    Article  CAS  Google Scholar 

  59. P. Chaudhari and D. Turnbull: Structure and properties of metallic glasses. Science 199, 11 (1978).

    Article  CAS  Google Scholar 

  60. M.S. Daw and M. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  61. Y. Suzuki and T. Egami: Shear deformation of glassy metals: Breakdown of cauchy relationship and anelasticity. J. Non-Cryst. Solids 75, 361 (1985).

    Article  CAS  Google Scholar 

  62. F. Léonforte, R. Boissière, A. Tanguy, J.P. Wittmer, and J-L. Barrat: Continuum limit of amorphous elastic bodies. III. Three-dimensional systems. Phys. Rev. B 72, 224206 (2005).

    Article  CAS  Google Scholar 

  63. F. Léonforte, A. Tanguy, J.P. Wittmer, and J-L. Barrat: Inhomogeneous elastic response of silica glass. Phys. Rev. Lett. 97, 055501 (2006).

    Article  CAS  Google Scholar 

  64. M. Tsamados, A. Tanguy, C. Goldenberg, and J-L. Barrat: Local elasticity map and plasticity in a model Lennard-Jones glass. Phys. Rev. E 80, 026112 (2009).

    Article  CAS  Google Scholar 

  65. E. Ma: Tuning order in disorder. Nat. Mater. 14, 547 (2015).

    Article  CAS  Google Scholar 

  66. D.B. Miracle: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).

    Article  CAS  Google Scholar 

  67. H. Tanaka: Roles of local icosahedral chemical ordering in glass and quasicrystal formation in metallic glass formers. J. Phys.: Condens. Matter 15, L491 (2003).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank K. Albe, T. Brink, J. Loeffler, H. Roesner, D. Rodney, and G. Wilde for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Derlet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derlet, P.M., Maaß, R. Thermal processing and enthalpy storage of a binary amorphous solid: A molecular dynamics study. Journal of Materials Research 32, 2668–2679 (2017). https://doi.org/10.1557/jmr.2017.251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.251

Navigation