Skip to main content
Log in

Dopant-controlled photoluminescence of Ag-doped Zn–In–S nanocrystals

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, we reported the growth of cadmium-free Ag-doped Zn–In–S nanocrystals (NCs) with effective photoluminescence (PL) via a hot-injection strategy. The effects of the nucleation temperatures, reaction times, and Ag-doping concentrations on the PL properties of Ag-doped Zn–In–S NCs were investigated systematically. The as-synthesized NCs exhibit color-tunable PL emissions covering a broad visible range of 472–585 nm. After being passivated by a protective ZnS shell, the PL quantum yield (QY) of the resultant NCs was greatly improved up to 33%. With the increase of the Ag-doping level, the PL is significantly intensified due to the improved concentration of Ag ions which provides more holes to recombine with electrons from the bottom of the conduction band. This also makes the emission via the dopant energy level become a powerful, competitive advantage for the NCs with higher Ag-doping levels, resulting in a longer lifetime and higher PL QY. These results suggest that tailoring the Ag-doping level can be a powerful strategy to control the optical properties of Ag-doped Zn–In–S NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. P. Wu and X-P. Yan: Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 42(12), 5489 (2013).

    Article  CAS  Google Scholar 

  2. N. Pradhan and D. Sarma: Advances in light-emitting doped semiconductor nanocrystals. J. Phys. Chem. Lett. 2(21), 2818 (2011).

    Article  CAS  Google Scholar 

  3. S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, and D.J. Norris: Doping semiconductor nanocrystals. Nature 436(7047), 91 (2005).

    Article  CAS  Google Scholar 

  4. D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin: Heavily doped semiconductor nanocrystal quantum dots. Science 332(6025), 77 (2011).

    Article  CAS  Google Scholar 

  5. D.J. Norris, A.L. Efros, and S.C. Erwin: Doped nanocrystals. Science 319(5871), 1776 (2008).

    Article  CAS  Google Scholar 

  6. W. Zhang, Y. Li, H. Zhang, X. Zhou, and X. Zhong: Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals. Inorg. Chem. 50(20), 10432 (2011).

    Article  CAS  Google Scholar 

  7. S. Cao, J. Zhao, W. Yang, C. Li, and J. Zheng: Mn2+-doped Zn–In–S quantum dots with tunable bandgaps and high photoluminescence properties. J. Mater. Chem. C 3(34), 8844 (2015).

    Article  CAS  Google Scholar 

  8. S. Cao, J. Zheng, J. Zhao, L. Wang, F. Gao, G. Wei, R. Zeng, L. Tian, and W. Yang: Highly efficient and well-resolved Mn2+ ion emission in MnS/ZnS/CdS quantum dots. J. Mater. Chem. C 1(14), 2540 (2013).

    Article  CAS  Google Scholar 

  9. S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang: Long-lived and well-resolved Mn2+ ion emissions in CuInS–ZnS quantum dots. Sci. Rep. 4, 07510 (2014).

    Article  Google Scholar 

  10. B.B. Srivastava, S. Jana, and N. Pradhan: Doping Cu in semiconductor nanocrystals: Some old and some new physical insights. J. Am. Chem. Soc. 133(4), 1007 (2011).

    Article  CAS  Google Scholar 

  11. N.S. Karan, D.D. Sarma, R.M. Kadam, and N. Pradhan: Doping transition metal (Mn or Cu) ions in semiconductor nanocrystals. J. Phys. Chem. Lett. 1(19), 2863 (2010).

    Article  CAS  Google Scholar 

  12. I. Levchuk, C. Wurth, F. Krause, A. Osvet, M. Batentschuk, U. Resch-Genger, C. Kolbeck, P. Herre, H.P. Steinruck, W. Peukert, and C.J. Brabec: Industrially scalable and cost-effective Mn2+ doped ZnxCd1−xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy Environ. Sci. 9(3), 1083 (2016).

    Article  CAS  Google Scholar 

  13. W. Zhang, X. Zhou, and X. Zhong: One-pot noninjection synthesis of Cu-doped ZnxCd1−xS nanocrystals with emission color tunable over entire visible spectrum. Inorg. Chem. 51(6), 3579 (2012).

    Article  CAS  Google Scholar 

  14. R. Xie and X. Peng: Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc. 131(30), 10645 (2009).

    Article  CAS  Google Scholar 

  15. W. Zhang, Q. Lou, W. Ji, J. Zhao, and X. Zhong: Color-tunable highly bright photoluminescence of cadmium-free Cu-doped Zn–In–S nanocrystals and electroluminescence. Chem. Mater. 26(2), 1204 (2014).

    Article  CAS  Google Scholar 

  16. T-T. Xuan, J-Q. Liu, C-Y. Yu, R-J. Xie, and H-L. Li: Facile synthesis of cadmium-free Zn–In–S:Ag/ZnS nanocrystals for bio-imaging. Sci. Rep. 6, 24459 (2016).

    Article  CAS  Google Scholar 

  17. C. Wang, S. Xu, Y. Shao, Z. Wang, Q. Xu, and Y. Cui: Synthesis of Ag doped ZnlnSe ternary quantum dots with tunable emission. J. Mater. Chem. C 2(26), 5111 (2014).

    Article  CAS  Google Scholar 

  18. R. Zeng, Z. Sun, S. Cao, R. Shen, Z. Liu, Y. Xiong, J. Long, J. Zheng, Y. Zhao, Y. Shen, and D. Wang: Facile synthesis of Ag-doped ZnCdS nanocrystals and transformation into Ag-doped ZnCdSSe nanocrystals with Se treatment. RSC Adv. 5, 1083 (2015).

    Article  CAS  Google Scholar 

  19. R. Zeng, Z. Sun, S. Cao, R. Shen, Z. Liu, J. Long, J. Zheng, Y. Shen, and X. Lin: A facile route to aqueous Ag:ZnCdS and Ag:ZnCdSeS quantum dots: Pure emission color tunable over entire visible spectrum. J. Alloys Compd. 632, 1 (2015).

    Article  CAS  Google Scholar 

  20. Y. Chen, L. Huang, S. Li, and D. Pan: Aqueous synthesis of glutathione-capped Cu+ and Ag+-doped ZnxCd1−xS quantum dots with full color emission. J. Mater. Chem. C 1(4), 751 (2013).

    Article  CAS  Google Scholar 

  21. J. Li, Y. Liu, J. Hua, L. Tian, and J. Zhao: Photoluminescence properties of transition metal-doped Zn–In–S/ZnS core/shell quantum dots in solid films. RSC Adv. 6(50), 44859 (2016).

    Article  CAS  Google Scholar 

  22. H. Yoon, J. Oh, M. Ko, H. Yoo, and Y. Do: Synthesis and characterization of green Zn–Ag–In–S and red Zn–Cu–In–S quantum dots for ultrahigh color quality of down-converted white LEDs. ACS Appl. Mater. Interfaces 7, 7342 (2015).

    Article  CAS  Google Scholar 

  23. J. Song, C. Ma, W. Zhang, S. Yang, S. Wang, L. Lv, L. Zhu, R. Xia, and X. Xu: Tumor cell-targeted Zn3In2S6 and Ag–Zn–In–S quantum dots for color adjustable luminophores. J. Mater. Chem. B 4, 7909 (2016).

    Article  CAS  Google Scholar 

  24. S. Cao, J. Zheng, J. Zhao, Z. Yang, M. Shang, C. Li, W. Yang, and X. Fang: Robust and stable ratiometric temperature sensor based on Zn–In–S quantum dots with intrinsic dual-dopant ion emissions. Adv. Funct. Mater. 26, 7224 (2016).

    Article  CAS  Google Scholar 

  25. Q-H. Zhang, Y. Tian, C-F. Wang, and S. Chen: Construction of Ag-doped Zn–In–S quantum dots toward white LEDs and 3D luminescent patterning. RSC Adv. 6(53), 47616 (2016).

    Article  CAS  Google Scholar 

  26. S. Cao, W. Ji, J. Zhao, W. Yang, C. Li, and J. Zheng: Color-tunable photoluminescence of Cu-doped Zn–In–Se quantum dots and their electroluminescence properties. J. Mater. Chem. C 4(3), 581 (2016).

    Article  CAS  Google Scholar 

  27. W. Xiang, C. Xie, J. Wang, J. Zhong, X. Liang, H. Yang, L. Luo, and Z. Chen: Studies on highly luminescent AgInS2 and Ag–Zn–In–S quantum dots. J. Alloys Compd. 588, 114 (2014).

    Article  CAS  Google Scholar 

  28. E. Prodan, C. Radloff, N. Halas, and P. Nordlander: A hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003).

    Article  CAS  Google Scholar 

  29. E. Prodan and P. Nordlander: Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120, 5444 (2004).

    Article  CAS  Google Scholar 

  30. Y. Chau, C. Lim, C. Chiang, N. Voo, N. Idris, and S. Chai: Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application. J. Nanopart. Res. 18, 88 (2016).

    Article  Google Scholar 

  31. F. Chau, Y. Jheng, F. Joe, F. Wang, W. Yang, S. Jheng, Y. Sun, Y. Chu, and J. Wei: Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J. Nanopart. Res. 15, 1424 (2013).

    Article  Google Scholar 

  32. K.E. Knowles, K.H. Hartstein, T.B. Kilburn, A. Marchioro, H.D. Nelson, P.J. Whitham, and D.R. Gamelin: Luminescent colloidal semiconductor nanocrystals containing copper: Synthesis, photophysics, and applications. Chem. Rev. 116, 10820 (2016).

    Article  CAS  Google Scholar 

  33. J. van Embden, A.S.R. Chesman, and J.J. Jasieniak: The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 27(7), 2246 (2015).

    Article  Google Scholar 

  34. E. Sotelo-Gonzalez, L. Roces, S. Garcia-Granda, M.T. Fernandez-Arguelles, J.M. Costa-Fernandez, and A. Sanz-Medel: Influence of Mn2+ concentration on Mn2+-doped ZnS quantum dot synthesis: Evaluation of the structural and photoluminescent properties. Nanoscale 5(19), 9156 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by National Natural Science Foundation of China (NSFC, Grant No. 61106066), Zhejiang Provincial Science Foundation (Grant No. LY14F040001), and Ningbo Municipal Natural Science Foundation (Grant No. 2016A610104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinju Zheng or Minhui Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Zheng, J., Shang, M. et al. Dopant-controlled photoluminescence of Ag-doped Zn–In–S nanocrystals. Journal of Materials Research 32, 3585–3592 (2017). https://doi.org/10.1557/jmr.2017.247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.247

Navigation