Skip to main content
Log in

Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The absorbance spectra of thin-film solar cells (TFSCs) can be enhanced by constructing the tunable periodic Ag-shell nano-bead (PASNB) arrays in the active material. In this paper, we investigated a plasmonic thin-film solar cell (TFSC) which composed of the arrays of PASNB deposited onto a crystalline silicon layer. By performing three-dimensional finite element method, we demonstrate that near field coupling among the PASNB arrays results in SPR modes with enhanced absorbance and field intensity. The proposed structure can significantly enhance the plasmonic activity in a wide range of incident light and enlarge working wavelength of absorbance in the range of near-UV, visible and near-infrared. We show that the sensitivity of the PASNB arrays reveals a linear relationship with the thickness of Ag-shell nano-bead (ASNB) for both the anti-bonding and bonding modes in the absorbance spectra. The broadband of absorbance spectra could be expanded as a wide range by varying the thickness of ASNB while the particle size is kept constant. Simulation results suggest this alternative scheme to the design and improvements on plasmonic enhanced TFSCs can be extended to other nanophotonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aizpurua J, Hanarp P, Sutherland DS, Käll M, Bryant GW, García de Abajo FL (2003) Optical properties of gold nanorings. Phys Rev Lett 90:057401

    Article  Google Scholar 

  • Akimov YA, Koh WS (2011) Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6:155–161

    Article  Google Scholar 

  • Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113

    Article  Google Scholar 

  • Ashwin CA, Aitzol GE, Hadiseh A, Jennifer A (2012) Dionne toward high-efficiency solar upconversion with plasmonic nanostructures. J Opt 14:024008

    Article  Google Scholar 

  • Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  • Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  • Brongersma ML, Pala RA, White J, Barnard E, Liu J (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:1

    Google Scholar 

  • Catchpole KR, Polman A (2008a) Plasmonic solar cells. Opt Expr 16:21793

    Article  Google Scholar 

  • Catchpole KR, Polman A (2008b) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113

    Article  Google Scholar 

  • Centeno A, Breeze J, Ahmed B, Reehal H, Alford N (2010) Scattering of light into silicon by spherical and hemispherical silver nanoparticles. Opt Lett 35:76–78

    Article  Google Scholar 

  • Centeno A, Ahmed B, Reehal H, Xie F (2013) Diffuse scattering from hemispherical nanoparticles at the air-silicon interface. Nanotechnology 24:415402

    Article  Google Scholar 

  • Chau YF, Jheng CY (2014) Buried effects of surface plasmon resonance modes for periodic metal-dielectric nanostructures consisting of coupled spherical metal nanoparticles with cylindrical pore filled with a dielectric. Plasmonics 9:1–9

    Article  Google Scholar 

  • Chau YF, Yang TJ, Tsai DP (2004) Imaging properties of three dimensional aperture near-field scanning optical microscopy and optimized near-field fiber probe designs. Jpn J Appl Phys 43:8115–8125

    Article  Google Scholar 

  • Chau YF, Yeh HH, Tsai DP (2008) Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl Opt 47:5557–5561

    Article  Google Scholar 

  • Chau YF, Lin YJ, Tsai DP (2010) Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars. Opt Expr 18:3510

    Article  Google Scholar 

  • Chau YF, Jheng CY, Joe SF, Wang SF, Yang W, Jheng JC, Sun YS, Chu Y, Wei JH (2013) Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J Nanopart Res 15:1424

    Article  Google Scholar 

  • Chau YF, Hu CC, Jheng CY, Tsai ST, Hsieh LZ, Yang W, Chiang CY, Sun YS, Lee CM (2014) Numerical investigation of surface plasmon resonance effects on photocatalytic activities using silver nano-beads photodeposited onto a titanium dioxide layer. Opt Commun 331:223–228

    Article  Google Scholar 

  • Chik H, Xu JM (2004) Nanometric superlattices: non-lithographic fabrication, materials and prospects. Mater Sci Eng R 43:103–138

    Article  Google Scholar 

  • Coˆte´ R, Segev B (1998) Retardation effects on quantum reflection from an evanescent-wave atomic mirror. Phys Rev A 58:3999–4013

    Article  Google Scholar 

  • Dunbar RB, Pfadler T, La NN, Baumberg JJ, Schmidt-Mende L (2012) Application of plasmonic silver island films in thin-film silicon solar cells. Nanotechnology 23:385202

    Article  Google Scholar 

  • Fan J, Lee W, Scholz R, Dadgar A, Krost A, Nielsch K, Zacharias M (2005) Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. Nanotechnology 16:913

    Article  Google Scholar 

  • Fredriksson H, Alaverdyan Y, Dmitriev A, Langhammer C, Sutherland DS, Zach M, Kasemo B (2007) Hole-mask collidal lithography. Adv Mater 19:4297–4302

    Article  Google Scholar 

  • Garcia-Molina R, Gras-Marti A, Ahowie Ritchie RH (1985) Retardation effects in the interaction of charged particle beams with bounded condensed media. J Phys C 18:335–5345

    Article  Google Scholar 

  • Gresho PM, Sani RL (2000) Incompressible flow and finite element method, volume 1 and 2. Wiley, New York

    Google Scholar 

  • Henson J, DiMaria J, Dimakis E, Moustakas TD, Paiella R (2012) Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays. Opt Lett 37:79–81

    Article  Google Scholar 

  • Ho YZ, Chen WT, Huang YW, Wu PC, Tseng ML, Wang WT, Chau YF, Tsai DP (2012) Tunable plasmonic resonance arising from broken-symmetric silver nano-beads with dielectric cores. J Opt 14:114010

    Article  Google Scholar 

  • Issak DM (2013) Plasmon resonance in nanoparticles. World Scientific, Singapore

    Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  Google Scholar 

  • Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of continuous media. Pergamon, Oxford

    Google Scholar 

  • Martensson T, Carlberg P, Borgstr¨om M, Montelius L, Seifert W, Samuelson L (2004) Nanowire arrays defined by nanoimprint lithography. Nano Lett 4:699–702

    Article  Google Scholar 

  • Mayergoyz ID (2013) Plasmon resonance in nanoparticles. World Scientific, Singapore

    Book  Google Scholar 

  • Nakayama K, Tanabe K, Atwater H (2008) Plasmonic nanoparticle-enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904

    Article  Google Scholar 

  • Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Scattering spectra of single gold nanoshells. Nano Lett 4:2355–2359

    Article  Google Scholar 

  • Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonance. Chem Phys Lett 288:243–247

    Article  Google Scholar 

  • Park JR, Choi DS, Gracias DH, Leong TG, Presser N, Stupian GW, Leung MS, Kim YK (2011) Fabrication and characterization of RF nanoantenna on a nanoliter-scale 3D microcontainer. Nanotechnology 22:455303

    Article  Google Scholar 

  • Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105

    Article  Google Scholar 

  • Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  Google Scholar 

  • Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901

    Article  Google Scholar 

  • Sakamoto S, Philippe L, Blechelany M, Michler J, Asoh H, Ono S (2008) Ordered hexagonal array of Ay nanodots on Si substrate based on colloidal crystal templating. Nanotechnology 19:405304

    Article  Google Scholar 

  • Santbergen R, Temple TL, Liang R, Smets AHM, Swaaij RACMMV, Zeman M (2012) Application of plasmonic silver island films in thin-film silicon solar cells. J Opt 14:024010

    Article  Google Scholar 

  • Sardar R, Heap TB, Shumaker-Parry (2007) Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach. J Am Chem Soc 129:5356

    Article  Google Scholar 

  • Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106

    Article  Google Scholar 

  • Spinelli P, Ferry VE, Groep JVD, Lare MV, Verschuuren MA, Schropp REI, Atwater HA, Polman A (2012) Plasmonic light trapping in thin-film Si solar cells. J Opt 14:02400

    Article  Google Scholar 

  • Sun Y, Wiley B, Li Z-Y, Xia Y (2004) Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J Am Chem Soc 126:9399–9406

    Article  Google Scholar 

  • Verschuuren M, Van Sprang H (2007) 3D photonic structures by sol–gel imprint lithography. Mater Res Soc Symp Proc 1002:N03–N05

    Article  Google Scholar 

  • Wu X, Liu YM, Yu ZY, Chen ZH, Gong H, Yin HZ (2013) Ultrathin nanodome solar cell incorporating an antireflection structure and metal grating. J Opt 15:055012

    Article  Google Scholar 

  • Xie F, Centeno A, Ryan MP, Riley DJ, Alford NM (2013) Au nanostructures by colloidal lithography: from quenching to extensive fluorescence enhancement. J Mater Chem B 1:536–543

    Article  Google Scholar 

  • Yang S, Cai W, Kong L, Lei Y (2010) Surface nanometer-scale patterning in realizing large-scale ordered arrays of metallic nanoshells with well-defined structures and controllable properties. Adv Funct Mater 20:2527–2533

    Article  Google Scholar 

  • Yu AA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107

    Article  Google Scholar 

  • Yuriy AA, Wee SK (2011) Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6:155–161

    Article  Google Scholar 

  • Zhang W, Ding F, Li WD, Wang Y, Hu J, Chou SY (2012) Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting. Nanotechnology 23:225301

    Article  Google Scholar 

  • Zhou K, Jee SW, Guo Z, Liu S, Lee JH (2011) Enhanced absorptive characteristics of metal nanoparticle-coated silicon nanowires for solar cell applications. Appl Opt 50:G63–G68

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University Research Grant of Universiti Brunei Darussalam (Grant No. UBD-ORI-URC-RG331-U01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Fong Chou Chau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou Chau, YF., Lim, C.M., Chiang, CY. et al. Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application. J Nanopart Res 18, 88 (2016). https://doi.org/10.1007/s11051-016-3394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3394-1

Keywords

Navigation