Skip to main content

Advertisement

Log in

Se-doped Ge10Sb90 for highly reliable phase-change memory with low operation power

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we propose a Se-incorporated Ge10Sb90 as a phase-change material for phase-change memory (PCM) with high reliability and low operation power. We investigated the effect of the Se concentration on the thermal and electrical properties of Se-doped Ge10Sb90 films by varying the Se concentration from 0 to 20 at.%. The crystallization temperature, crystallization activation energy, and maximum ten-year data retention temperature increased with the increasing Se, thus demonstrating the improved thermal stability of Se-doped Ge10Sb90 films with higher Se contents. More Se also increased the rate factor, band gap, threshold voltage, and load resistance. In addition, the crystallization speed, programming window, and resistances of both the amorphous and crystalline states increased with the increasing Se concentration. In contrast, the reset current decreased with the increasing Se concentration. These results demonstrate that Se-doped Ge10Sb90 is a highly promising material for PCM applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.H. Kryder and C.S. Kim: After hard drives-what comes next? IEEE Trans. Magn. 45, 3406 (2009).

    Article  CAS  Google Scholar 

  2. R.E. Simpson, M. Krbal, P. Fons, A.V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida: Toward the ultimate limit of phase change in Ge2Sb2Te5. Nano Lett. 10, 414 (2010).

    Article  CAS  Google Scholar 

  3. S.J. Ahn, Y.N. Hwang, Y.J. Song, S.H. Lee, S.Y. Lee, J.H. Park, C.W. Jeong, K.C. Ryoo, J.M. Shin, J.H. Park, Y. Fai, J.H. Oh, G.H. Koh, G.T. Jeong, S.H. Joo, S.H. Choi, Y.H. Son, J.C. Shin, Y.T. Kim, H.S. Jeong, and K. Kim: Highly reliable 50 nm contact cell technology for 256 Mb PRAM. In Symposium on VLSI Technology Digest of Technical Papers (IEEE Symposium on VLSI Technology, Kyoto, Japan, 2005); pp. 98–99.

    Google Scholar 

  4. S.L. Cho, J.H. Yi, Y.H. Ha, B.J. Kuh, C.M. Lee, J.H. Park, S.D. Nam, H. Horii, B.O. Cho, K.C. Ryoo, S.O. Park, H.S. Kim, U.I. Chung, J.T. Moon, and B.I. Ryu: Highly scalable on-axis confined cell structure for high density PRAM beyond 256 Mb. In Symposium on VLSI Technology Digest of Technical Papers (IEEE Symposium on VLSI Technology, Kyoto, Japan, 2005); pp. 96–97.

    Google Scholar 

  5. F. Xiong, M.H. Bae, Y. Dai, A.D. Liao, A. Behnam, E.A. Carrion, S. Hong, D. Ielmini, and E. Pop: Self-aligned nanotube-nanowire phase change memory. Nano Lett. 13, 464 (2013).

    Article  CAS  Google Scholar 

  6. S-W. Nam, H-S. Chung, Y.C. Lo, L. Qi, J. Li, Y. Lu, A.T.C. Johnson, Y.W. Jung, P. Nukala, and R. Agarwal: Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires. Science 336, 1561 (2012).

    Article  CAS  Google Scholar 

  7. M. Terao, T. Morikawa, and T. Ohta: Electrical phase-change memory: Fundamentals and state of the art. Jpn. J. Appl. Phys. 48, 080001 (2009).

    Article  Google Scholar 

  8. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, and S.R. Elliott: Breaking the speed limits of phase-change memory. Science 336, 1566 (2012).

    Article  CAS  Google Scholar 

  9. S. Lai and T. Lowrey: OUM-A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. In IEEE IEDM Tech. Dig. (IEEE International Electron Devices Meeting, Washington, DC, 2001); pp. 36.5.1–36.5.4.

    Google Scholar 

  10. N. Takaura, T. Ohyanagi, M. Tai, M. Kitamura, M. Kinoshita, K. Akita, T. Morikawa, S. Kato, M. Araidai, K. Kamiya, T. Yamamoto, and K. Shiraishi: Understanding the switching mechanism of charge-injection GeTe/Sb2Te3 phase change memory through electrical measurement and analysis of 1R test structure. In ICMTS (IEEE International Conference, Udine, Italy, 2014); pp. 32–37.

    Google Scholar 

  11. S. Hosaka, K.M. Tamura, H. Sone, and H. Koyanagi: Proposal for a memory transistor using phase-change and nanosize effects. Microelectron. Eng. 73–74, 736 (2004).

    Article  Google Scholar 

  12. J.D. Maimon, K.K. Hunt, L. Burcin, and J. Rodgers: Chalcogenide memory arrays: Characterization and radiation effects. IEEE Trans. Nucl. Sci. 50, 1878 (2003).

    Article  CAS  Google Scholar 

  13. L. Van Pieterson, M.H.R. Lankhrst, M. Van Schijndel, A.E.T. Kuiper, and J.H.J. Roosen: Phase change recording materials with a growth-dominated crystallization mechanism: A materials overview. J. Appl. Phys. 97, 083520 (2005).

    Article  Google Scholar 

  14. H.Y. Cheng, T.H. Hsu, S. Raoux, J.Y. Wu, P.Y. Du, M. Breitwisch, Y. Zhu, E.K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S.C. Lai, H.L. Lung, and C. Lam: A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material. Presented at the Electron Devices Meeting, IEDM 2011 (IEEE International, Washington, DC, 2011); pp. 3.4.1–3.4.4.

    Google Scholar 

  15. S. Rauox, H-Y. Cheng, J. Sandrini, J. Li, and J. Jordan-Sweet: Materials engineering for phase change random access memory. In Non-Volatile Memory Technology Symposium (NVMTS), 2011 11th Annual (IEEE, Shanghai, China, 2011); pp. 1–5.

    Google Scholar 

  16. M.J. Kang, T.J. Park, D. Wamwangi, K. Wang, C. Steimer, S.Y. Choi, and M. Wuttig: Electrical properties and crystallization behavior of SbxSe100−x thin films. Microsyst. Technol. 13, 153 (2007).

    Article  CAS  Google Scholar 

  17. M.J. Kang, S.Y. Choi, D. Wamwangi, K. Wang, C. Steimer, and M. Wuttig: Structural transformation of SbxSe100−x thin films for phase change nonvolatile memory applications. J. Appl. Phys. 98, 014904 (2005).

    Article  Google Scholar 

  18. A. Giridhar, P.S.L. Narasimham, and S. Mahadevan: Electrical properties of GeSbSe glasses. J. Non-Cryst. Solids 37, 165 (1980).

    Article  CAS  Google Scholar 

  19. S.A. Saleh: Synthesis and characterization of Sb65Se35−xGex alloys. Mater. Sci. Appl. 2, 950 (2011).

    CAS  Google Scholar 

  20. W.H. Zachariasen: The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841 (1932).

    Article  CAS  Google Scholar 

  21. L. Pauling: The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed. (Cornell University, New York, 1960); ch. 3.

    Google Scholar 

  22. H.E. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  23. P.C. Chang, C.C. Chang, S.C. Chang, and T.S. Chin: Crystallization behavior of Si-added amorphous Ga19Sb81 films for phase-change memory. J. Non-Cryst. Solids 383, 106 (2014).

    Article  CAS  Google Scholar 

  24. H.Y. Cheng, K.F. Kao, C.M. Lee, and T.S. Chin: Crystallization kinetics of Ga–Sb–Te films for phase change memory. Thin Solid Films 516, 5513 (2008).

    Article  CAS  Google Scholar 

  25. W.A. Johnson and R.F. Mehl: Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min., Metall. Pet. Eng. 135, 416 (1939).

    Google Scholar 

  26. H. Lee, Y.K. Kim, D. Kim, and D.H. Kang: Switching behavior of indium selenide based phase-change memory cell. IEEE Trans. Magn. 41, 1034 (2005).

    Article  CAS  Google Scholar 

  27. J. Feng, Y. Zhang, B. Cai, and B. Chen: Thermal stability and electronic structures of N-doped SiSb films for high temperature applications of phase-change memory. Appl. Phys. A 97, 507 (2009).

    Article  CAS  Google Scholar 

  28. Y.N. Hwang, S.H. Lee, S.J. Ahn, S.Y. Lee, K.C. Ryoo, H.S. Hong, H.C. Koo, F. Yeung, J.H. Oh, H.J. Kim, W.C. Jeong, J.H. Park, H. Horii, Y.H. Ha, J.H. Yi, G.H. Koh, G.T. Jeong, H.S. Jeong, and K.N. Kim: Writing current reduction for high-density phase-change RAM. In IEEE IEDM Tech. Dig. (IEEE International Electron Devices Meeting, Washington, DC, 2003); pp. 37.1.1–37.1.4.

    Google Scholar 

  29. O. Madelung, U. Rössler, and M. Schulz: Non-Tetrahedrally Bonded Elements and Binary Compounds I, 1st ed. (Springer, Heidelberg, 1998).

    Book  Google Scholar 

  30. A.K. Bhatnagar, K.V. Reddy, and V. Srivastava: Optical energy gap of amorphous selenium: Effect of annealing. J. Phys. D: Appl. Phys. 18, L149 (1985).

    Article  CAS  Google Scholar 

  31. X. Zhou, L. Wu, Z. Song, F. Rao, M. Zhu, C. Peng, D. Yao, S. Song, B. Liu, and S. Feng: Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application. Appl. Phys. Lett. 101, 142104 (2012).

    Article  Google Scholar 

  32. K.H. Do, D.K. Lee, H.C. Sohn, M-H. Cho, and D-H. Ko: Crystallization behaviors of laser induced Ge2Sb2Te5 in different amorphous states. J. Electrochem. Soc. 157, H264 (2010).

    Article  CAS  Google Scholar 

  33. K.H. Do, D.K. Lee, J-H. Bae, D-H. Ko, H.C. Sohn, and M-H. Cho: Comparison of the crystallization behaviors in as-deposited and melt-quenched N-doped Ge2Sb2Te5 Thin films. J. Electrochem. Soc. 158, H347 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by grants from the R&D Program for Industrial Core Technology funded by the Ministry of Trade, Industry, and Energy (MOTIE), Republic of Korea (Grant No. 10039200) and the Joint Program for Samsung Electronics–Yonsei University by Samsung Research Funding Center for Future Technology (SRFC-MA1502-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Hong Ko.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Byeon, DS., Ko, DH. et al. Se-doped Ge10Sb90 for highly reliable phase-change memory with low operation power. Journal of Materials Research 32, 2449–2455 (2017). https://doi.org/10.1557/jmr.2017.221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.221

Navigation