Skip to main content
Log in

SiC-bonded diamond materials produced by pressureless silicon infiltration

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Extremely hard, wear-resistant SiC-bonded diamond materials with diamond contents of approximately 45–60% by volume can be prepared by pressureless infiltration of shaped diamond compacts with silicon. Materials with diamond grain sizes in the range of 10–100 µm can be produced having a free silicon content of less than 5 vol%. Components with large dimensions can be prepared as graded or ungraded materials. Graded components are composed of silicon infiltrated SiC base material with diamond–SiC composite layers of 0.1 mm by dip coating technology to several mm in thickness by doubled die pressing in regions with high loading. This creates the possibility of producing low-cost, wear-resistant components of various geometries and dimensions with bending strengths of 400–500 MPa, hardness values of 48 GPa, and fracture toughness levels of 4.5–5 MPa m1/2 for use in extreme wear conditions. Thermal conductivities of up to 500 W/(m K) were obtained, render these materials interesting for heat sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J. Rödel, A.B.N. Kounga, M. Weissenberger-Eibl, D. Koch, A. Bierwisch, W. Rossner, M.l.J. Hoffmann, R. Danzer, and G. Schneider: Development of a roadmap for advanced ceramics: 2010–2025. J. Eur. Ceram. Soc. 29, 1549–1560 (2009).

    Article  Google Scholar 

  2. Expertenstudie Zukunftspotentiale von Hochleistungskeramiken [Expert study on future potentials of high-performance ceramics]. Available at: https://www.ikts.fraunhofer.de/content/dam/ikts/startseite/downloads/expertenstudie_05_14.pdf (accessed 16 May 2017).

  3. J. Haines, J.M. Leger, and G. Bocquillon: Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31(1), 1–23 (2001).

    Article  CAS  Google Scholar 

  4. G.A. Voronin, T.W. Zerda, J. Gubicza, T. Ungar, and S.N. Dub: Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique. J. Mater. Res. 19(9), 2703–2707 (2004).

    Article  CAS  Google Scholar 

  5. E.A. Ekimov, E.L. Gromnitskaya, S. Gierlotka, W. Lojkowski, B. Palosz, A. Swiderska-Sroda, J.A. Kozubowski, and A.M. Naletov: Mechanical behavior and microstructure of nanodiamond-based composite materials. J. Mater. Sci. Lett. 21, 1699–1702 (2002).

    Article  CAS  Google Scholar 

  6. Y.S. Ko, T. Tsurumi, O. Fukunaga, and T. Yano: High pressure sintering of diamond–SiC composites. J. Mater. Sci. 36, 469–475 (2001).

    Article  CAS  Google Scholar 

  7. M. Shimono and S. Kume: HIP-sintered composites of C (diamond)/SiC. J. Am. Ceram. Soc. 87, 752–755 (2004).

    Article  CAS  Google Scholar 

  8. G.A. Voronin, T.W. Zerda, J. Qian, Y. Zhao, D. He, and S.N. Dub: Diamond–SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diamond Relat. Mater. 12, 1477–1481 (2003).

    Article  CAS  Google Scholar 

  9. T.C. Ekstrom and S.K. Gordeev: New carbide composites with extraordinary properties. Key Eng. Mater. 161, 75–80 (1999).

    Google Scholar 

  10. K. Mlungwane, M. Herrmann, and I. Sigalas: The low-pressure infiltration of diamond by silicon to form diamond–silicon carbide composites. J. Eur. Ceram. Soc. 28, 321–326 (2008).

    Article  CAS  Google Scholar 

  11. S.K. Gordeev, S.G. Zhukov, L.V. Danchukova, and T. Ekström: Method of manufacturing a diamond composite and a composite produced by same. U.S. Patent No. 6,709,747, 2004.

  12. M. Herrmann, B. Matthey, S. Höhn, I. Kinski, D. Rafaja, and A. Michaelis: Diamond–ceramics composites—New materials for a wide range of challenging applications. J. Eur. Ceram. Soc. 32, 1915–1923 (2012).

    Article  CAS  Google Scholar 

  13. M. Herrmann and H.P. Martin: Verfahren zur Herstellung von bauteilen mit einer Verschleißschutzbeschichtung, ein so hergestelltes Bauteil sowie dessen Verwendung [Method for producing components with a wear-resistant coating, component produced in this way and use thereof]. Patent DE 10 2007063517 B3, 2009.

  14. M. Herrmann, B. Matthey, S. Kunze, and U. Petasch: SiC–diamond materials: Wear-resistant and versatile. CFI, Ceram. Forum Int. 91(10), E39–E43 (2014).

    Google Scholar 

  15. Z. Yang, X. He, M. Wu, L. Zhang, and A. Ma: Infiltration mechanism of diamond/SiC composites fabricated by Si-vapor vacuum reactive infiltration process. J. Eur. Ceram. Soc. 33, 869–878 (2013).

    Article  CAS  Google Scholar 

  16. C. Zhu, J. Lang, and N. Ma: Preparation of Si–diamond–SiC composites by in situ reactive sintering and their thermal properties. Ceram. Int. 38(8), 6131–6136 (2012).

    Article  CAS  Google Scholar 

  17. Z. Yang, X. He, M. Wu, L. Zhang, A. Ma, R. Liu, H. Hu, Y. Zhang, and X. Qu: Fabrication of diamond/SiC composites by Si-vapor vacuum reactive infiltration. Ceram. Int. 3, 3399–3403 (2013).

    Article  Google Scholar 

  18. B. Matthey, S. Höhn, A-K. Wolfrum, U. Mühle, M. Motylenko, D. Rafaja, A. Michaelis, and M. Herrmann: Microstructural investigation of diamond–SiC composites produced by pressureless silicon infiltration. J. Eur. Ceram. Soc. 37(5), 1917–1928 (2017).

    Article  CAS  Google Scholar 

  19. H. Höhn, K. Sempf, and M. Hermann: Artefact-free preparation and characterization of ceramic materials and interfaces. Ceram. Forum Int. 88(11–12), 16–20 (2011).

    Google Scholar 

  20. Institut für Struktur-und Funktionskeramik Montanuniversität Leoben: Ball on 3balls-Test (Web-app). Available at: http://www.isfk.at/de/960/ (accessed 16 May 2017).

  21. M. Blecha, W. Schmid, A. Krauth, and W. Wruss: Herstellung grobkörniger, auf hohen SiC-Gehalt optimierter, SiC-C-Grünkörper für die Herstellung von SiSiC [Manufacturing of coarse-grained SiC-C green bodies optimized for high SiC content for the production of SiSiC]. Sprechsaal 123, 263–268 (1990).

    CAS  Google Scholar 

  22. H. Cohrt: Herstellung, Eigenschaften und Anwendung von reaktionsgebundenen, Siliciuminfiltrierten Siliciumkarbid [Preparation, properties and application of reaction-bonded silicon-infiltrated silicon carbide]. Z. Werkstofftech. 16, 277–285 (1990).

    Article  Google Scholar 

  23. P. Greil, T. Lifka, and A. Kaindl: Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties. J. Eur. Ceram. Soc. 18, 1975–1983 (1998).

    Article  CAS  Google Scholar 

  24. P. Greil, T. Lifka, and A. Kaindl: Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J. Eur. Ceram. Soc. 18, 1961–1973 (1998).

    Article  CAS  Google Scholar 

  25. C. Zollfrank and H. Sieber: Microstructure and phase morphology of wood derived biomorphous SiSiC–ceramics. J. Eur. Ceram. Soc. 24, 495–506 (1998).

    Article  Google Scholar 

  26. K. Mlungwane, I. Sigalas, M. Herrmann, and M. Rodrıguez: The wetting behaviour and reaction kinetics in diamond–silicon carbide systems. Ceram. Int. 35, 2435–2441 (2009).

    Article  CAS  Google Scholar 

  27. P. Sangsuwan, S.N. Tewari, J.E. Gatica, M. Singh, and R. Dickerson: Reactive infiltration of silicon melt through microporous amorphous carbon performs. Metall. Mater. Trans. B 30, 933–944 (1999).

    Article  Google Scholar 

  28. M. Hon and R. Davis: Self-diffusion of 14C in polycrystalline beta-SiC. J. Mater. Sci. 14, 2411–2421 (1979).

    Article  CAS  Google Scholar 

  29. M. Hon, R. Davis, and D. Newbury: Self-diffusion of 30Si in polycrystalline beta-SiC. J. Mater. Sci. 15, 2073–2080 (1980).

    Article  CAS  Google Scholar 

  30. M.W. Barsoum: Fundamentals of Ceramics (Institute of Physics Publishing, London, 2003); pp. 175–190.

    Book  Google Scholar 

  31. W. Harrer, R. Danzer, and A. Rendtel: Influence of the surface condition on the biaxial strength of a commercial silicon carbide. J. Eur. Ceram. Soc. 36, 3895–3900 (2016).

    Article  CAS  Google Scholar 

  32. M. Herrmann, E. Kluge, C. Rödel, A. Mc Kie, and F. van Staden: Corrosion behaviour of silicon carbide–diamond composite materials in aqueous solutions. J. Eur. Ceram. Soc. 34, 2143–2151 (2014).

    Article  CAS  Google Scholar 

  33. T.W. Zerda, M. Wieligor, T. Ungar, and B. Palosz: Spatial distribution of residual stress in diamond–silicon carbide composites. J. Phys.: Conf. Ser. 121, 1–4 (2008).

    Google Scholar 

  34. P. Larsson, N. Axen, T. Ekström, S. Gordeev, and S. Hogmark: Wear of a new type of diamond composite. Int. J. Refract. Met. Hard Mater. 17(6), 453–460 (1999).

    Article  CAS  Google Scholar 

  35. B. Blug, M. Hörner, B. Matthey, and M. Herrmann: Untersuchung des tribologischen Verhaltens von Diamant–SiC Gradientenwerkstoffen am Beispiel vom Drahtziehen–Experiment und Simulation [Investigation of the tribological behavior of diamond-SiC gradient materials using the wire drawing as an example - experiment and simulation]. In Tagungsband GFT 2013, Gesellschaft für Tribologie e.V. (2013); ISBN 978-3-00-028824-1.

  36. A-K. Wolfrum, C. Quitzke, B. Matthey, M. Herrmann, and A. Michaelis: Wear behavior of diamond–silicon nitride composites sintered with FAST/SPS. WEAR (2017). (in press). Available at: https://doi.org/10.1016/j.wear.2016.10.021.

    Google Scholar 

  37. MatRessource-Project “EkoDiSc” by the German Federal Ministry of Education and Science (BMBF). Available at: http://www.matressource.de/news/artikel/matressource-projekt-ekodisc-erhaelt-bewilligungsbescheid/ (accessed 16 May 2017).

Download references

ACKNOWLEDGMENTS

The results presented here were generated in projects financed by the German Federal Ministry of Education and Science (BMBF)37 and by the BMWi/AIF based on a decision of the German Bundestag (parliament).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Matthey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthey, B., Kunze, S., Hörner, M. et al. SiC-bonded diamond materials produced by pressureless silicon infiltration. Journal of Materials Research 32, 3362–3371 (2017). https://doi.org/10.1557/jmr.2017.218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.218

Navigation