Skip to main content
Log in

Microstructural and crystallographic response of shock-loaded pure copper

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microstructural and crystallographic aspects of high-velocity forming or “rapid” forming of rolled sheets of pure copper have been investigated in this work. Significant changes in crystallographic orientation and microstructure were observed when thin (0.5 mm) metal sheets of annealed copper were subjected to high strain rate deformation in a conventional shock tube at a very low impulse magnitude (∼0.2 N s), which is inconceivable in conventional metal forming. Shock-loaded samples show characteristic texture evolution with a high brass {110}〈112〉 component. A significant change in grain orientation spread was observed with increasing amount of effective strain without any drastic change in grain size. The texture after deformation was found to be strain-dependent. The path of texture evolution is dependent on the initial texture. Misorientation was limited to less than 5°. Deformation bands and deformation twins were observed. There was a decrease in twin [Σ3 coincidence site lattice (CSL)] boundary number fraction with increasing strain due to the change in twin boundary character to high-angle random boundary (HARB) as a result of dislocation pile up. The study shows the probability of a high-velocity shock wave forming pure Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16

Similar content being viewed by others

References

  1. M. Stoffel: Limit states of elastic–viscoplastic plate deformations caused by repeated shock wave-loadings. Part 1: Experimental observation. Mech. Res. Commun. 33(6), 771 (2006).

    Article  Google Scholar 

  2. M. Stoffel: Limit states of elastic–viscoplastic plate deformations caused by repeated shock wave-loadings. Part 2: Theoretical modelling. Mech. Res. Commun. 33(6), 775 (2006).

    Article  Google Scholar 

  3. R. Shabadi, S. Suwas, S. Kumar, H. Roven, and E. Dwarkadasa: Texture and formability studies on AA7020 Al alloy sheets. Mater. Sci. Eng., A 558, 439 (2012).

    Article  CAS  Google Scholar 

  4. J.E. Cohen, A. Nelson, and R.J. De Angelis: Some Observations On Shock-Loaded Copper (DTIC Document, Northwestern University, Evanston, 1965).

    Google Scholar 

  5. A.G. Dhere, H-J. Kestenbach, and M.A. Meyers: Correlation between texture and substructure of conventionally and shock-wave-deformed aluminum. Mater. Sci. Eng. 54(1), 113 (1982).

    Article  Google Scholar 

  6. G.T. Higgins: The structure and annealing behavior of shock-loaded, cube-oriented copper. Metall. Trans. 2(5), 1277 (1971).

    CAS  Google Scholar 

  7. L.F. Trueb: Electron-microscope study of thermal recovery processes in explosion-shocked nickel. J. Appl. Phys. 40(7), 2976 (1969).

    Article  CAS  Google Scholar 

  8. M. Rose and T. Berger: Shock deformation of polycrystalline aluminium. Philos. Mag. 17(150), 1121 (1968).

    Article  CAS  Google Scholar 

  9. N. Ray, G. Jagadeesh, and S. Suwas: Response of shock wave deformation in AA5086 aluminum alloy. Mater. Sci. Eng., A 622, 219 (2015).

    Article  CAS  Google Scholar 

  10. S. Suwas, A. Singh, K.N. Rao, and T. Singh: Effect of modes of rolling on evolution of the texture in pure copper and some copper-base alloys: Part I: Rolling texture. Z. Metallkd. 93(9), 918 (2002).

    Article  CAS  Google Scholar 

  11. S. Suwas and A. Singh: Role of strain path change in texture development. Mater. Sci. Eng., A 356(1), 368 (2003).

    Article  Google Scholar 

  12. N. Gurao, S. Sethuraman, and S. Suwas: Effect of strain path change on the evolution of texture and microstructure during rolling of copper and nickel. Mater. Sci. Eng., A 528(25), 7739 (2011).

    Article  CAS  Google Scholar 

  13. S. Vercammen, B. Blanpain, B.C. De Cooman, and P. Wollants: Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning. Acta Mater. 52(7), 2005 (2004).

    Article  CAS  Google Scholar 

  14. J.J. Sidor, R.H. Petrov, and L.A. Kestens: Microstructural and texture changes in severely deformed aluminum alloys. Mater. Charact. 62(2), 228 (2011).

    Article  CAS  Google Scholar 

  15. S. Roy, S. Singh, S. Suwas, S. Kumar, and K. Chattopadhyay: Microstructure and texture evolution during accumulative roll bonding of aluminium alloy AA5086. Mater. Sci. Eng., A 528(29), 8469 (2011).

    Article  CAS  Google Scholar 

  16. T. Leffers and R.K. Ray: The brass-type texture and its deviation from the copper-type texture. Prog. Mater. Sci. 54(3), 351 (2009).

    Article  CAS  Google Scholar 

  17. X.H. An, Q.Y. Lin, S.D. Wu, and Z.F. Zhang: Mechanically driven annealing twinning induced by cyclic deformation in nanocrystalline Cu. Scr. Mater. 68(12), 988 (2013).

    Article  CAS  Google Scholar 

  18. X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Evolution of microstructural homogeneity in copper processed by high-pressure torsion. Scr. Mater. 63(5), 560 (2010).

    Article  CAS  Google Scholar 

  19. X.H. An, Q.Y. Lin, G. Sha, M.X. Huang, S.P. Ringer, Y.T. Zhu, and X.Z. Liao: Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion. Acta Mater. 109, 300 (2016).

    Article  CAS  Google Scholar 

  20. M.A. Meyers: A mechanism for dislocation generation in shock-wave deformation. Scr. Metall. 12(1), 21 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisht, A., Ray, N., Jagadeesh, G. et al. Microstructural and crystallographic response of shock-loaded pure copper. Journal of Materials Research 32, 1484–1498 (2017). https://doi.org/10.1557/jmr.2017.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.15

Navigation