Skip to main content
Log in

High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-porosity metakaolin-based geopolymer foams (GFs) were fabricated by a gelcasting technique using hydrogen peroxide (foaming agent) in combination with Tween 80 (surfactant). Slurries processed in optimized conditions enabled to fabricate potassium based GFs with a total porosity in the range of ∼67 to ∼86 vol% (∼62 to ∼84 vol% open), thermal conductivity from ∼0.289 to ∼0.091 W/mK, and possessing a compressive strength from ∼0.3 to ∼9.4 MPa. Moreover, factors that influence the compressive strength, the porosity, the thermal conductivity, and the cell size distribution were investigated. The results showed that the cell size and size distribution can be controlled by adding different content of surfactant and foaming agent. The foamed geopolymer can also be used as adsorbents for the removal of copper and ammonium ions from wastewater. The foams, due to their low thermal conductivity, could also be used for thermal insulation. It was also possible to produce geopolymer formulations that could be printed using additive manufacturing technology (Direct Ink writing), which enabled to produce components with nonstochastic porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3

Similar content being viewed by others

References

  1. J. Davidovits: Geopolymer Chemistry & Applications, 3rd ed. (Institut Géopolymère, Saint-Quentin, 2011).

    Google Scholar 

  2. J. Davidovits: Geopolymers and geopolymeric materials. J. Therm. Anal. 35, 429 (1989).

    Article  CAS  Google Scholar 

  3. I. Lecomte, M. Liégeois, A. Rulmont, R. Cloots, and F. Maseri: Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag. J. Mater. Res. 18, 2571 (2003).

    Article  CAS  Google Scholar 

  4. P. Palmero, A. Formia, P. Antonaci, S. Brini, and J. Tulliani: Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization. Ceram. Int. 41, 12967 (2015).

    Article  CAS  Google Scholar 

  5. R.M. Novais, L. Buruberri, G. Ascensão, M. Seabra, and J. Labrincha: Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J. Cleaner Prod. 119, 99 (2016).

    Article  CAS  Google Scholar 

  6. P. Hlaváček, V. Šmilauer, F. Škvára, L. Kopecký, and R. Šulc: Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties. J. Eur. Ceram. Soc. 35, 703 (2015).

    Article  CAS  Google Scholar 

  7. K. Hemra and P. Aungkavattana: Effect of cordierite addition on compressive strength and thermal stability of metakaolin based geopolymer. Adv. Powder Technol. 27(3), 1021 (2016).

    Article  CAS  Google Scholar 

  8. M.H. Al-Majidi, A. Lampropoulos, A. Cundy, and S. Meikle: Development of geopolymer mortar under ambient temperature for in situ applications. Constr. Build. Mater. 120, 198 (2016).

    Article  CAS  Google Scholar 

  9. Y. Ge, Y. Yuan, K. Wang, Y. He, and X. Cui: Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater. J. Hazard. Mater. 299, 711 (2015).

    Article  CAS  Google Scholar 

  10. C. Bai and P. Colombo: High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram. Int. 43(2), 2267 (2017).

    Article  CAS  Google Scholar 

  11. M. Minelli, V. Medri, E. Papa, F. Miccio, E. Landi, and F. Doghieri: Geopolymers as solid adsorbent for CO2 capture. Chem. Eng. Sci. 148, 267 (2016).

    Article  CAS  Google Scholar 

  12. R.M. Novais, L.H. Buruberri, M.P. Seabra, and J.A. Labrincha: Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters. J. Hazard. Mater. 318, 631 (2016).

    Article  CAS  Google Scholar 

  13. T. Luukkonen, M. Sarkkinen, K. Kemppainen, J. Rämö, and U. Lassi: Metakaolin geopolymer characterization and application for ammonium removal from model solutions and landfill leachate. Appl. Clay Sci. 119, Part 2, 266 (2016).

    Article  CAS  Google Scholar 

  14. F.J. López, S. Sugita, M. Tagaya, and T. Kobayashi: Metakaolin-based geopolymers for targeted adsorbents to heavy metal ion separation. J. Mater. Sci. Chem. Eng. 2, 16 (2014).

    Google Scholar 

  15. S. Sharma, D. Medpelli, S. Chen, and D. Seo: Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production. RSC Adv. 5, 65454 (2015).

    Article  CAS  Google Scholar 

  16. Y.J. Zhang, L.C. Liu, Y. Xu, and Y.C. Wang: A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water. J. Hazard. Mater. 209, 146 (2012).

    Article  CAS  Google Scholar 

  17. Z. Zhang, J.L. Provis, A. Reid, and H. Wang: Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 62, 97 (2015).

    Article  CAS  Google Scholar 

  18. E. Papa, V. Medri, D. Kpogbemabou, V. Morinière, J. Laumonier, A. Vaccari, and S. Rossignol: Porosity and insulating properties of silica-fume based foams. Energy Build. 131, 223 (2016).

    Article  Google Scholar 

  19. V. Ducman and L. Korat: Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater. Charact. 113, 207 (2016).

    Article  CAS  Google Scholar 

  20. G. Masi, W.D. Rickard, L. Vickers, M.C. Bignozzi, and A. Van Riessen: A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram. Int. 40, 13891 (2014).

    Article  CAS  Google Scholar 

  21. J. Henon, A. Alzina, J. Absi, D.S. Smith, and S. Rossignol: Potassium geopolymer foams made with silica fume pore forming agent for thermal insulation. J. Porous Mater. 20, 37 (2013).

    Article  CAS  Google Scholar 

  22. L. Verdolotti, B. Liguori, I. Capasso, A. Errico, D. Caputo, M. Lavorgna, and S. Iannace: Synergistic effect of vegetable protein and silicon addition on geopolymeric foams properties. J. Mater. Sci. 50, 2459 (2015).

    Article  CAS  Google Scholar 

  23. E. Prud’homme, P. Michaud, E. Joussein, C. Peyratout, A. Smith, S. Arrii-Clacens, J. Clacens, and S. Rossignol: Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Ceram. Soc. 30, 1641 (2010).

    Article  CAS  Google Scholar 

  24. E. Prud’Homme, P. Michaud, E. Joussein, J. Clacens, S. Arii-Clacens, I. Sobrados, C. Peyratout, A. Smith, J. Sanz, and S. Rossignol: Structural characterization of geomaterial foams—Thermal behavior. J. Non-Cryst. Solids 357, 3637 (2011).

    Article  CAS  Google Scholar 

  25. C. Bai, G. Franchin, H. Elsayed, A. Conte, and P. Colombo: High strength metakaolin-based geopolymer foams with variable macroporous structure. J. Eur. Ceram. Soc. 36, 4243 (2016).

    Article  CAS  Google Scholar 

  26. A.M. Papadopoulos: State of the art in thermal insulation materials and aims for future developments. Energy Build. 37(1), 77 (2005).

    Article  Google Scholar 

  27. E. Liefke: Industrial applications of foamed inorganic polymers. ’99 Geopolymer International Conference Proceedings (1999); p. 189.

  28. H. Rahier, J. Wastiels, M. Biesemans, R. Willlem, G. Van Assche, and B. Van Mele: Reaction mechanism, kinetics and high temperature transformations of geopolymers. 42(9), 2982 (2007).

    CAS  Google Scholar 

  29. E. Papa, V. Medri, P. Benito, A. Vaccari, S. Bugani, J. Jaroszewicz, W. Swieszkowski, and E. Landi: Synthesis of porous hierarchical geopolymer monoliths by ice-templating. Microporous Mesoporous Mater. 215, 206 (2015).

    Article  CAS  Google Scholar 

  30. M.S. Cilla, M.R. Morelli, and P. Colombo: Open cell geopolymer foams by a novel saponification/peroxide/gelcasting combined route. J. Eur. Ceram. Soc. 34, 3133 (2014).

    Article  CAS  Google Scholar 

  31. G. Franchin and P. Colombo: Porous geopolymer components through inverse replica of 3D printed sacrificial templates. J. Ceram. Sci. Technol. 6, 105 (2015).

    Google Scholar 

  32. B.E. Glad and W.M. Kriven: Highly porous geopolymers through templating and surface interactions. J. Am. Ceram. Soc. 98, 2052 (2015).

    Article  CAS  Google Scholar 

  33. J. Feng, R. Zhang, L. Gong, Y. Li, W. Cao, and X. Cheng: Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 65, 529 (2015).

    Article  CAS  Google Scholar 

  34. K. Ramamurthy and N. Narayanan: Influence of composition and curing on drying shrinkage of aerated concrete. Mater. Struct. 33, 243 (2000).

    Article  CAS  Google Scholar 

  35. E.K.B. Ceron and H.T.E. Leonelli: Insulating behavior of metakaolin-based geopolymer materials assess with heat flux meter and laser flash techniques. J. Therm. Anal. Calorim. 108, 1189 (2012).

    Article  CAS  Google Scholar 

  36. M. Yong, J. Liu, U.J. Alengaram, M.Z. Jumaat, and K.H. Mo: Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy Build. 72, 238 (2014).

    Article  Google Scholar 

  37. Z. Zhang, J.L. Provis, A. Reid, and H. Wang: Geopolymer foam concrete: An emerging material for sustainable construction. Constr. Build. Mater. 56, 113 (2014).

    Article  Google Scholar 

  38. T. Nie, L. Xue, M. Ge, H. Ma, and J. Zhang: Fabrication of poly(L-lactic acid) tissue engineering scaffolds with precisely controlled gradient structure. Mater. Lett. 176, 25 (2016).

    Article  CAS  Google Scholar 

  39. Y. Zhang, D. Rodrigue, and A. Ait-Kadi: High-density polyethylene foams. I. Polymer and foam characterization. J. Appl. Polym. Sci. 90(8), 2111 (2003).

    Article  CAS  Google Scholar 

  40. H. Jung, A. Fazio, N. Van Dooren, A. Delcroix, C. Faggio, R. Blust, and G. De Boeck: Kidney activity increases in copper exposed gold fish (Carassius auratus auratus). Comp. Biochem. Physiol., Part C: Pharmacol., Toxicol. Endocrinol. 190, 32 (2016).

    Google Scholar 

  41. P. Sepsi, E. Sárközi, K. Hrotkó, and L. Kardos: Monitoring of air pollution in budapest, Hungary using tree leaf samples—preliminary results. AgroLife Journal 4(1), 1 (2015).

    Google Scholar 

  42. F. Hagenkamp-korth, A. Haeussermann, and E. Hartung: Agriculture, ecosystems and environment effect of urease inhibitor application on urease activity in three different cubicle housing systems under practical conditions. Agric., Ecosyst. Environ. 202, 168 (2015).

    Article  CAS  Google Scholar 

  43. L. Yin, H.X. Peng, S. Dhara, L. Yang, and B. Su: Natural additives in protein coagulation casting process for improved microstructural controllability of cellular ceramics. Composites, Part B 40(7), 638 (2009).

    Article  CAS  Google Scholar 

  44. L. yan Yin, X. gui Zhou, J. Shan Yu, H. lei Wang, S. Zhao, Z. Luo, and B. Yang: New consolidation process inspired from making steamed bread to prepare Si3N4 foams by protein foaming method. J. Eur. Ceram. Soc. 33(7), 1387 (2013).

    Article  CAS  Google Scholar 

  45. Z. Liu, N.N. Shao, D.M. Wang, J.F. Qin, T.Y. Huang, W. Song, M.X. Lin, J.S. Yuan, and Z. Wang: Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash. Int. J. Miner., Metall. Mater. 21(1), 89 (2014).

    Article  CAS  Google Scholar 

  46. R.R. Lloyd, J.L. Provis, K.J. Smeaton, and J.S.J. van Deventer: Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion. Microporous Mesoporous Mater. 126, 32 (2009).

    Article  CAS  Google Scholar 

  47. R. Rice: Comparison of physical property-porosity behaviour with minimum solid area models. J. Mater. Sci. 31, 1509 (1996).

    Article  CAS  Google Scholar 

  48. R. Rice: Comparison of stress concentration versus minimum solid area based mechanical property–porosity relations. J. Mater. Sci. 28, 2187 (1993).

    Article  CAS  Google Scholar 

  49. Y. Ge, X. Cui, Y. Kong, Z. Li, Y. He, and Q. Zhou: Porous geopolymeric spheres for removal of Cu(II) from aqueous solution: Synthesis and evaluation. J. Hazard. Mater. 283, 244 (2015).

    Article  CAS  Google Scholar 

  50. M.V. Twigg and J.T. Richardson: Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 46(12), 4166 (2007).

    Article  CAS  Google Scholar 

  51. F. Lucci, A. Della Torre, G. Montenegro, and P. Dimopoulos Eggenschwiler: On the catalytic performance of open cell structures versus honeycombs. Chem. Eng. J. 264, 514 (2015).

    Article  CAS  Google Scholar 

  52. K.K. Al-Zboon, B.M. Al-smadi, and S. Al-Khawaldh: Natural volcanic tuff-based geopolymer for Zn removal: Adsorption isotherm, kinetic, and thermodynamic study. Water, Air, Soil Pollut. 227(7), 1 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Chengying Bai gratefully acknowledges the financial support of the China Scholarship Council (CSC) (No. 201407565009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengying Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Franchin, G., Elsayed, H. et al. High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment. Journal of Materials Research 32, 3251–3259 (2017). https://doi.org/10.1557/jmr.2017.127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.127

Navigation