Skip to main content
Log in

Atomistic simulation of crack propagation in single crystal tungsten under cyclic loading

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The propagation of a pre-existing center crack in single crystal tungsten under cyclic loading was examined by molecular dynamics (MD) simulations at various temperatures. The results indicated that the deformation mechanism and fracture behavior at crack tip were differences for variously oriented cracks. The [001](010) crack propagated as the form of the formation of slip, while the deformation mechanisms of [10–1](101) crack were blunting voids at 300 K. At higher temperature, many more slip systems were activated resulting in the change of mode of crack propagation. Simulated results showed that the effect of temperature on deformation mechanism and fracture behavior of [001](010) crack was more sensitive than that of [10–1](101) crack. Meanwhile, the influence of a 5〈310〉{110} model grain boundary (GB) on crack propagation was also discussed. Detailed analysis showed that the grain boundary resisted the crack growth by changing the deformation mechanisms and the path of crack propagation at crack tip before the crack reached the grain boundary, and had an important influence on the crack growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Y. Cheng, M. Mrovec, and P. Gumbsch: Crack nucleation at the Σ9(221) symmetrical tilt grain boundary in tungsten. Mater. Sci. Eng., A 483(4), 329 (2008).

    Article  Google Scholar 

  2. Y. Zhang, A.V. Ganeev, J.T. Wang, J.Q. Liu, and I.V. Alexandrov: Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity. Mater. Sci. Eng., A 503, 37 (2009).

    Article  Google Scholar 

  3. S.N. Mathaudhu, A.J. deRosset, K.T. Hartwig, and L.J. Kecskes: Microstructures and recrystallization behavior of severely hot-deformed tungsten. Mater. Sci. Eng., A 503, 28 (2009).

    Article  Google Scholar 

  4. A. Alfonso, D. Juul Jensen, G.N. Luo, and W. Pantleon: Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150–1350 °C. J. Nucl. Mater. 455, 591 (2014).

    Article  CAS  Google Scholar 

  5. A. Alfonso, D. Juul Jensen, G.N. Luo, and W. Pantleon: Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100–1250 °C. Fusion Eng. Des. 98–99, 1924 (2015).

    Article  Google Scholar 

  6. X.Y. Tan, L.M. Luo, Z.L. Lu, G.N. Luo, X. Zan, J.G. Cheng, and Y.C. Wu: Development of tungsten as plasma-facing materials by doping tantalum carbide nanoparticles. Powder Technol. 269, 437 (2015).

    Article  CAS  Google Scholar 

  7. G.P. Potirniche, J.L. Hearndon, M.F. Horstemeyer, and X.W. Ling: Lattice orientation effects on void growth and coalescence in fcc single crystals. Int. J. Plast. 22(5), 921 (2006).

    Article  CAS  Google Scholar 

  8. Y.F. Guo and D.L. Zhao: Atomistic simulation of structure evolution at a crack tip in bcc-iron. Mater. Sci. Eng. 448(1–2), 281 (2007).

    Article  Google Scholar 

  9. T. Tang, S. Kim, and M.F. Horstemeyer: Fatigue crack growth in magnesium single crystals under cyclic loading: Molecular dynamics simulation. Comput. Mater. Sci. 48(2), 426 (2010).

    Article  CAS  Google Scholar 

  10. H. Xie, T. Yu, F. Yin, and C. Tang: The effects of crack orientation on the twin formation from the crack tip in γ-Ni3Al. Mater. Sci. Eng., A 580, 99 (2013).

    Article  CAS  Google Scholar 

  11. L. Ma, S.F. Xiao, H.Q. Deng, and W.Y. Hu: Atomic simulation of fatigue crack propagation in Ni3Al. Appl. Phys. A 118, 1399 (2015).

    Article  CAS  Google Scholar 

  12. H. Lee and V. Tomar: Understanding effect of grain boundaries in the fracture behavior of polycrystalline tungsten under mode-I loading. J. Eng. Mater. Technol. 134(3), 031010 (2012).

    Article  Google Scholar 

  13. L. Ma, S.F. Xiao, H.Q. Deng, and W.Y. Hu: Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading. Int. J. Fatigue 68, 253 (2014).

    Article  CAS  Google Scholar 

  14. G.P. Potirniche, M.F. Horstemeyer, B. Jelinek, and G.J. Wagner: Fatigue damage in nickel and copper single crystals at nanoscale. Int. J. Fatigue 27, 1179 (2005).

    Article  CAS  Google Scholar 

  15. A. Machová, J. Pokluda, A. Uhnáková, and P. Hora: 3D atomistic studies of fatigue behaviour of edge crack (001) in bcc iron loaded in mode I and II. Int. J. Fatigue 66, 11 (2014).

    Article  Google Scholar 

  16. K.J. Zhao, C.Q. Chen, Y.P. Shen, and T.J. Lu: Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper. Comput. Mater. Sci. 46(3), 749 (2009).

    Article  CAS  Google Scholar 

  17. E. Gaganidze, D. Rupp, and J. Aktaa: Fracture behaviour of polycrystalline tungsten. J. Nucl. Mater. 446(s1–3), 240 (2014).

    Article  CAS  Google Scholar 

  18. X. Yu, F. Gou, B. Li, and N. Zhang: Numerical study of the effect of hydrogen on the crack propagation behavior of single crystal tungsten. Fusion Eng. Des. 89, 1096 (2014).

    Article  CAS  Google Scholar 

  19. Y. Zhang, F.C. Zhang, L.H. Qian, and T.S. Wang: Atomic-scale simulation of iron phase boundary affecting crack propagation using molecular dynamics method. Comput. Mater. Sci. 50(5), 1754 (2011).

    Article  CAS  Google Scholar 

  20. Online source: National Institute of Standards and Technology: 2017. Available at: http://www.ctcms.nist.gov/potentials/ (accessed 05 March 2016).

  21. S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz: Interatomic potential for vanadium suitable for radiation damage simulations. J. Appl. Phys. 93(6), 3328 (2003).

    Article  CAS  Google Scholar 

  22. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  23. C. Kittel: Introduction to Solid State Physics, 7th ed. (Wiley Press, New York, 1996); p. 57.

    Google Scholar 

  24. K. Maier, M. Peo, B. Saile, H.E. Schaefer, and A. Seeger: High-temperature positron annihilation and vacancy formation in refractory metals. Philos. Mag. A 40, 701 (1979).

    Article  CAS  Google Scholar 

  25. H.J. Wollenberger: Point defects. Phys. Metall. 2, 1139 (1983).

    Google Scholar 

  26. D.I. Bolef and J. De Klerk: Elastic constants of single-crystal Mo and W between 77° and 500° K. J. Appl. Phys. 33(7), 2311 (1962).

    Article  CAS  Google Scholar 

  27. G. Bonny, D. Terentyev, A. Bakaev, P. Grigorev, and D. Van Neck: Many-body central force potentials for tungsten. Modell. Simul. Mater. Sci. Eng. 22(22), 053001 (2014).

    Article  Google Scholar 

  28. W.R. Tyson and W.A. Miller: Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 62(1), 267 (1977).

    Article  CAS  Google Scholar 

  29. G.B. Bachelet, D.R. Hamann, and M. Schluter: Pseudopotentials that work: From H to Pu. Phys. Rev. B: Condens. Matter Mater. Phys. 26, 4199 (1982).

    Article  CAS  Google Scholar 

  30. S. Giusepponi and M. Celino: The ideal tensile strength of tungsten and tungsten alloys by first-principles calculations. J. Nucl. Mater. 435, 52 (2013).

    Article  CAS  Google Scholar 

  31. Z. Chen, L.J. Kecskes, K. Zhu, and Q. Wei: Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten. J. Nucl. Mater. 481, 190 (2016).

    Article  CAS  Google Scholar 

  32. Y.L. Liu, H.B. Zhou, Y. Zhang, S. Jin, and G.H. Lu: The ideal tensile strength and deformation behavior of a tungsten single crystal. Nucl. Instrum. Methods Phys. Res. 267(18), 3282 (2009).

    Article  CAS  Google Scholar 

  33. A. Kelly and N.H. Macmillan: Strong Solids, Vol. 1015, 3rd ed. (Clarendon Press, Oxford, 1986).

    Google Scholar 

  34. A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010).

    Article  Google Scholar 

  35. J.D. Honeycutt and H.C. Andersen: Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J. Phys. Chem. 91(19), 4950 (1987).

    Article  CAS  Google Scholar 

  36. B. Gludovatz, S. Wurster, A. Hoffmann, and R. Pippan: A study into the crack propagation resistance of pure tungsten. Eng. Fract. Mech. 100, 76 (2013).

    Article  Google Scholar 

  37. D. Hull, P. Beardmore, and A.P. Valintine: Crack propagation in single crystals of tungsten. Philos. Mag. 12(119), 1021 (1965).

    Article  CAS  Google Scholar 

  38. J.P. Hirth and J. Lothe: Theory of Dislocations (Wiley-Interscience Press, New York, 1982); p. 764.

    Google Scholar 

  39. K. Nishimura and N. Miyazaki: Molecular dynamics simulation of crack growth under cyclic loading. Comput. Mater. Sci. 31, 269 (2014).

    Article  Google Scholar 

  40. P. Wang, J.G. Xu, Y.G. Zhang, and H.Y. Song: Molecular dynamics simulation of effect of grain on mechanical properties of nano-polycrystal alpha-Fe. Acta Phys. Sin. 65, 236201 (2016).

    Google Scholar 

  41. L. Yan and J.K. Fan: In situ SEM study of fatigue crack initiation and propagation behavior in 2524 aluminum alloy. Mater. Des. 110, 592 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2014GB104002), the National Natural Science Foundation of China (Grant No. U1530151, 51471068), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120161110015). We also appreciate the support by Atomic Simulation Lab of Hunan University and the computation platform of National Supper-Computer Center in Changsha.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-fang Xiao or Wangyu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, XT., Xiao, Sf., Deng, Hq. et al. Atomistic simulation of crack propagation in single crystal tungsten under cyclic loading. Journal of Materials Research 32, 1474–1483 (2017). https://doi.org/10.1557/jmr.2017.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.114

Navigation