Skip to main content
Log in

Atomic simulation of fatigue crack propagation in Ni3Al

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The fatigue crack propagation behavior of Ni3Al was studied using molecular dynamics simulation at room temperature. The simulation results showed that the deformation mechanisms and the crack propagation path were significantly influenced by the orientation of initial crack. The formation process of slip bands around the crack tip was investigated in various cracks and indicated that the slip bands were able to hinder the initiation and propagation of cracks. Besides, the crack growth rate was also calculated by the Paris equation, and the results revealed that the crack growth rate increased with the increasing stress intensity factor range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.M. Pollock, A.S. Argon, Creep resistance of CMSX-3 nickel base superalloys single crystals. Acta Mater. 40, 1–30 (1992)

    Article  Google Scholar 

  2. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, New York, 2006), p. 372

    Book  Google Scholar 

  3. F.R.N. Nabarro, H.L. Villiers, The Physics of Creep (Taylor and Francis, London, 1995)

    Google Scholar 

  4. M.G. Ardakani, M. McLean, B.A. Shollock, Twin formation during creep in single crystals of nickel-based superalloys. Acta Mater. 47, 2593 (1999)

    Article  Google Scholar 

  5. K. Kakehi, Effect of plastic anisotropy of tensile strength of single crystals of an Ni-based superalloy. Scr. Mater. 42, 197 (1999)

    Article  Google Scholar 

  6. A. Manonukul, F.P.E. Dunne, D. Knowles, Physically-based model for creep in nickel-base superalloy C263 both above and below the gamma solvus. Acta Mater. 50, 2917 (2002)

    Article  Google Scholar 

  7. M. Kolbe, The temperature decrease of the critical resolved shear stress in nickel-base superalloys. Mater. Sci. Eng. 319–321, 383 (2001)

    Article  Google Scholar 

  8. L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wanga, M.J. Mills, Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Progr. Mater. Sci. 54, 839 (2009)

    Article  Google Scholar 

  9. D.M. Knowles, S. Gunturi, The role of 〈112〉{111} slip in the asymmetric nature of creep of single crystal superalloy CMSX-4. Mater. Sci. Eng., A 328, 223 (2002)

    Article  Google Scholar 

  10. P.M. Sarosi, G.B. Viswanathan, M.J. Mills, Direct observation of an extended complex stacking fault in the gamma’ phase of a Ni-base superalloy. Scr. Mater. 55, 727 (2006)

    Article  Google Scholar 

  11. E. Fleury, L. Remy, Behavior of nickel-base superalloy single crystals under thermal-mechanical fatigue. Metall. Mater. Trans. A 25, 99 (1994)

    Article  Google Scholar 

  12. R. Chieragatti, L. Remy, Influence of orientations on the low cycle fatigue of MAR-M 200 single crystals at 650degC II. Cyclic stress-strain behavior. Mater. Sci. Eng., A 141, 11 (1991)

    Article  Google Scholar 

  13. S. Kraft, R. Zauter, H. Mughrabi, Aspects of high-temperature low-cycle thermomechanical fatigue of a single nickel-base superalloy. Fatigue Fract. Eng. Mater. Struct. 16, 237 (1993)

    Article  Google Scholar 

  14. J.J. Moverare, S. Johansson, Damage mechanisms of a high-Cr single crystal superalloy during thermomechanical fatigue. Mater. Sci. Eng., A 527, 553 (2010)

    Article  Google Scholar 

  15. J. Kanesund, J. Moverare, S. Johansson, Deformation and damage mechanisms in IN792 during thermomechanical fatigue. Mater. Sci. Eng., A 528, 4658 (2011)

    Article  Google Scholar 

  16. H.U. Hong, J.G. Kang, B.G. Choi, I.S. Kim, Y.S. Yoo, C.Y. Jo, A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy. Int. J. Fatigue 33, 1592 (2011)

    Article  Google Scholar 

  17. Fei Sun, Jianxin Zhang, Hiroshi Harada, Deformation twining and twinning-related fracture in nickel-base single-superalloys during thermomechanical fatigue cycling. Acta Mater. 67, 45–57 (2014)

    Article  Google Scholar 

  18. H. Zhou, H. Harada, Y. Ro, I. Okada, Investigations on the thermo-mechanical fatigue of two Ni-based single-crystal superalloys. Mater. Sci. Eng., A 394, 161 (2005)

    Article  Google Scholar 

  19. M. Dao, B.K. Kad, R.J. Asaro, Mechanism of intense shear failure in Ni3Al single crystals. Philos. Mag. A 75, 443 (1997)

    Article  ADS  Google Scholar 

  20. X. Hong-Xian, W. Chong-Yu, Y. Tao et al., Dislocation formation and twinning from the crack tip in Ni3Al: molecular dynamics simulation. Chin. Phys. B 18, 0251 (2009)

    Article  ADS  Google Scholar 

  21. H.-X. Xie, L. Bo, Y. Tao, Atomistic simulation of microtwinning at the crack tip in L12 Ni3Al. Philos. Mag. 92, 1542–1553 (2012)

    Article  ADS  Google Scholar 

  22. H. Xie, Y. Tao, F. Yin et al., The effects of crack orientation on the twin formation from the crack tip in γ′-Ni3Al. Mater. Sci. Eng., A 580, 99–104 (2013)

    Article  Google Scholar 

  23. G.P. Purja Pun, Y. Mishin, Development of an interatomic potential for the Ni–Al system. Philos. Mag. 89, 3245–3267 (2009)

    Article  ADS  Google Scholar 

  24. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomics potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393 (1999)

    Article  ADS  Google Scholar 

  25. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  26. J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987)

    Article  Google Scholar 

  27. G.P. Potirniche, M.F. Horstemeyer, B. Jelinek et al., Fatigue damage in nickel and copper single crystals at nanoscale. Int. J. Fatigue 27, 1179–1185 (2005)

    Article  Google Scholar 

  28. G.P. Potirniche, M.F. Horstemeyer, On the growth of nanoscale fatigue cracks. Philos. Mag. Lett. 86(3), 185–193 (2006)

    Article  ADS  Google Scholar 

  29. D. Farkas, M. Willemann, B. Hyde, Atomistic mechanisms of fatigue in nanocrystalline metals. Phys. Rev. Lett. 94, 165502 (2005)

    Article  ADS  Google Scholar 

  30. G.P. Potirniche, M.F. Horstemeyer, P.M. Gullett et al., Atomistic modeling of fatigue crack growth and dislocation structuring in FCC crystals. Proc. R. Soc. A 462, 3707–3731 (2006)

    Article  ADS  MATH  Google Scholar 

  31. Johannes Weertman, Dislocation crack tip shielding and the Pairs exponent. Mater. Sci. Eng., A 468, 59–63 (2007)

    Article  Google Scholar 

  32. D. Roylance, “Fatigue”. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, 200

Download references

Acknowledgments

This work is supported by the NSFC (No. 51071063 and 11076012). We would also like to appreciate the support by Atomic Simulation Lab of Hunan University and the computation platform of National Super-Computer Center in Changsha.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shifang Xiao or Wangyu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Xiao, S., Deng, H. et al. Atomic simulation of fatigue crack propagation in Ni3Al. Appl. Phys. A 118, 1399–1406 (2015). https://doi.org/10.1007/s00339-014-8895-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8895-0

Keywords

Navigation