Skip to main content
Log in

Optical biosensors utilizing graphene and functional DNA molecules

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single-stranded DNA molecules capable of molecular recognition and catalysis can now be routinely generated via the technique of in vitro selection. When coupled with adequate signal transduction modes, these synthetic functional DNA species represent a potential paradigm shift in the research and development of biosensors to meet the challenges of our rapidly changing world. Coupling functional DNA molecules with graphene materials for the design of optical biosensors has become an exciting research area in recent years, mostly because graphene materials are not only excellent quenchers of fluorescence, but they also display considerably different affinities for free and ligand-bound functional DNA molecules. We will discuss notable progress in this area in this mini-review by highlighting representative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. J. Liu, Z. Cao, and Y. Lu: Functional nucleic acid sensors. Chem. Rev. 109, 1948 (2009).

    Article  CAS  Google Scholar 

  2. N.K. Navani and Y. Li: Nucleic acid aptamers and enzymes as sensors. Curr. Opin. Chem. Biol. 10, 272 (2006).

    Article  CAS  Google Scholar 

  3. D. Chen, H. Feng, and J.H. Li: Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027 (2012).

    Article  CAS  Google Scholar 

  4. Y. Liu, X. Dong, and P. Chen: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283 (2012).

    Article  CAS  Google Scholar 

  5. E. Morales-Narváez and A. Merkoci: Graphene oxide as an optical biosensing platform. Adv. Mater. 24, 3298 (2012).

    Article  CAS  Google Scholar 

  6. K.P. Loh, Q. Bao, G. Eda, and M. Chhowalla: Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015 (2010).

    Article  CAS  Google Scholar 

  7. Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin: Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 29, 205 (2011).

    Article  CAS  Google Scholar 

  8. T.R. Cech: The chemistry of self-splicing RNA and RNA enzymes. Science 236, 1532 (1987).

    Article  CAS  Google Scholar 

  9. T. Hermann and D.J. Patel: Adaptive recognition by nucleic acid aptamers. Science 287, 820 (2000).

    Article  CAS  Google Scholar 

  10. A. Ponce-Salvatierra, K. Wawrzyniak-Turek, U. Steuerwald, C. Hobartner, and V. Pena: Crystal structure of a DNA catalyst. Nature 529, 231 (2016).

    Article  CAS  Google Scholar 

  11. C. Tuerk and L. Gold: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505 (1990).

    Article  CAS  Google Scholar 

  12. A.D. Ellington and J.W. Szostak: In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818 (1990).

    Article  CAS  Google Scholar 

  13. D.L. Robertson and G.F. Joyce: Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467 (1990).

    Article  CAS  Google Scholar 

  14. W. Mok and Y. Li: Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 8, 7050 (2008).

    Article  CAS  Google Scholar 

  15. Y. Wang, Z. Li, T.J. Weber, D. Hu, C.T. Lin, J. Li, and Y. Lin: In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal. Chem. 85, 6775 (2013).

    Article  CAS  Google Scholar 

  16. K. Ling, H. Jiang, Y. Li, X. Tao, C. Qiu, and F.R. Li: A self-assembling RNA aptamer-based graphene oxide sensor for the turn-on detection of theophylline in serum. Biosens. Bioelectron 86, 8 (2016).

    Article  CAS  Google Scholar 

  17. L.C. Bock, L.C. Griffin, J.A. Latham, E.H. Vermaas, and J.J. Toole: Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564 (1992).

    Article  CAS  Google Scholar 

  18. K.Y. Wang, S.H. Krawczyk, N. Bischofberger, S. Swaminathan, and P.H. Bolton: The tertiary structure of a DNA aptamer which binds to and inhibits thrombin determines activity. Biochemistry 32, 11285 (1993).

    Article  CAS  Google Scholar 

  19. R.F. Macaya, P. Schultze, F.W. Smith, J.A. Roe, and J. Feigon: Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. U. S. A. 90, 3745 (1993).

    Article  CAS  Google Scholar 

  20. K. Padmanabhan, K.P. Padmanabhan, J.D. Ferrara, J.E. Sadler, and A. Tulinsky: The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J. Biol. Chem. 268, 17651 (1993).

    Article  CAS  Google Scholar 

  21. D.E. Huizenga and J.W. Szostak: A DNA aptamer that binds adenosine and ATP. Biochemistry 34, 656 (1995).

    Article  CAS  Google Scholar 

  22. C.H. Lin and D.J. Patel: Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: Distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chem. Biol. 4, 817 (1997).

    Article  CAS  Google Scholar 

  23. R.R. Breaker and G.F. Joyce: A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223 (1994).

    Article  CAS  Google Scholar 

  24. S.W. Santoro and G.F. Joyce: A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. U. S. A. 94, 4262 (1997).

    Article  CAS  Google Scholar 

  25. R.P. Cruz, J.B. Withers, and Y. Li: Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme. Chem. Biol. 11, 57 (2004).

    Article  CAS  Google Scholar 

  26. K. Schlosser and Y. Li: A versatile endoribonuclease mimic made of DNA: Characteristics and applications of the 8-17 RNA-cleaving DNAzyme. ChemBioChem 11, 866 (2010).

    Article  CAS  Google Scholar 

  27. N. Carmi, S.R. Balkhi, and R.R. Breaker: Cleaving DNA with DNA. Proc. Natl. Acad. Sci. U. S. A. 95, 2233 (1998).

    Article  CAS  Google Scholar 

  28. P.J.J. Huang, J. Lin, J. Cao, M. Vazin, and J. Liu: Ultrasensitive DNAzyme beacon for lanthanides and metal speciation. Anal. Chem. 86, 1816 (2014).

    Article  CAS  Google Scholar 

  29. S.F. Torabi, P. Wu, C.E. McGhee, L. Chen, K. Hwang, N. Zheng, J. Cheng, and Y. Lu: In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing. Proc. Natl. Acad. Sci. U. S. A. 112, 5903 (2015).

    Article  CAS  Google Scholar 

  30. R. Saran and J. Liu: A silver DNAzyme. Anal. Chem. 88, 4014 (2016).

    Article  CAS  Google Scholar 

  31. K. Tram, P. Kanda, and Y. Li: Lighting up RNA-cleaving DNAzymes for biosensing. J. Nucleic Acids 2012, 958683 (2012).

    Article  CAS  Google Scholar 

  32. M.M. Ali, S.D. Aguirre, H. Lazim, and Y. Li: Fluorogenic DNAzyme probes as bacterial indicators. Angew. Chem., Int. Ed. 50, 3751 (2011).

    Article  CAS  Google Scholar 

  33. Z. Shen, Z. Wu, D. Chang, W. Zhang, K. Tram, C. Lee, P. Kim, B.J. Salena, and Y. Li: A catalytic DNA activated by a specific strain of bacterial pathogen. Angew. Chem., Int. Ed. 55, 2431 (2016).

    Article  CAS  Google Scholar 

  34. B.J. Hong, Z. An, O.C. Compton, and S.T. Nguyen: Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: Application to “turn-on” DNA sensing in biological media. Small 8, 2469 (2012).

    Article  CAS  Google Scholar 

  35. S. Gowtham, R.H. Scheicher, R. Ahuja, R. Pandey, and S.P. Karna: Physisorption of nucleobases on graphene: Density-functional calculation. Phys. Rev. B: Condens. Matter Mater. Phys. 76, 033401 (2007).

    Article  CAS  Google Scholar 

  36. N. Varghese, U. Mogera, A. Govindaraj, A. Das, P.K. Maiti, A.K. Sood, and C.N.R. Rao: Binding of DNA nucleobases and nucleosides with graphene. Chem. Phys. Chem. 10, 206 (2009).

    Article  CAS  Google Scholar 

  37. L.S. Green, D. Jellinek, R. Jenison, A. Östman, C.H. Heldin, and N. Janjic: Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35, 14413 (1996).

    Article  CAS  Google Scholar 

  38. M. Wu, R. Kempaiah, P.J. Huang, V. Maheshwari, and J. Liu: Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27, 2731 (2011).

    Article  CAS  Google Scholar 

  39. H. Lei, L. Mi, X. Zhou, J. Chen, J. Hu, S. Guo, and Y. Zhang: Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion. Nanoscale 3, 3888 (2011).

    Article  CAS  Google Scholar 

  40. B. Liu, Z. Sun, X. Zhang, and J. Liu: Mechanisms of DNA sensing on graphene oxide. Anal. Chem. 85, 7987 (2013).

    Article  CAS  Google Scholar 

  41. J.S. Park, N.I. Goo, and D.E. Kim: Mechanism of DNA adsorption and desorption on graphene oxide. Langmuir 30, 12587 (2014).

    Article  CAS  Google Scholar 

  42. Z. Liu, B. Liu, J. Ding, and J. Liu: Fluorescent sensors using DNA-functionalized graphene oxide. Anal. Bioanal. Chem. 406, 6885 (2014).

    Article  CAS  Google Scholar 

  43. B. Liu, S. Salgado, V. Maheshwari, and J. Liu: DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci. 26, 41 (2016).

    Article  CAS  Google Scholar 

  44. M.H. Li, Y.S. Wang, J.X. Cao, S.H. Chen, X. Tang, X.F. Wang, Y.F. Zhu, and Y.Q. Huang: Ultrasensitive detection of uranyl by graphene oxide-based background reduction and RCDzyme-based enzyme strand recycling signal amplification. Biosens. Bioelectron. 72, 294 (2015).

    Article  CAS  Google Scholar 

  45. H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju: Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 82, 5511 (2010).

    Article  CAS  Google Scholar 

  46. X. Liu, F. Wang, R. Aizen, O. Yehezkeli, and I. Willner: Graphene oxide/nucleic-acid-stabilized silver nanoclusters: Functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J. Am. Chem. Soc. 135, 11832 (2013).

    Article  CAS  Google Scholar 

  47. C. Liu, Z. Wang, H. Jia, and Z. Li: Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: A highly sensitive biosensing platform. Chem. Commun. 47, 4661 (2011).

    Article  CAS  Google Scholar 

  48. R.S. Swathi and K.L. Sebastian: Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. J. Chem. Phys. 130, 086101 (2009).

    Article  CAS  Google Scholar 

  49. M. Liu, H.M. Zhao, X. Quan, S. Chen, and X.F. Fan: Distance independent quenching of quantum dots by nanoscale-graphene in self-assembled sandwich immunoassay. Chem. Commun. 46, 7909 (2010).

    Article  CAS  Google Scholar 

  50. X.H. Zhao, R.M. Kong, X.B. Zhang, H.M. Meng, W.N. Liu, W. Tan, G.L. Shen, and R.Q. Yu: Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity. Anal. Chem. 83, 5062 (2011).

    Article  CAS  Google Scholar 

  51. M. Liu, H. Zhao, S. Chen, H. Yu, Y. Zhang, and X. Quan: Label-free fluorescent detection of Cu(II) ions based on DNA cleavage-dependent graphene-quenched DNAzymes. Chem. Commun. 47, 7749 (2011).

    Article  CAS  Google Scholar 

  52. M. Liu, H. Zhao, S. Chen, H. Yu, Y. Zhang, and X. Quan: A “turn-on” fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme. Biosens. Bioelectron. 26, 4111 (2011).

    Article  CAS  Google Scholar 

  53. Y. Wang, Z. Li, D. Hu, C.T. Lin, J. Li, and Y. Lin: Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132, 9274 (2010).

    Article  CAS  Google Scholar 

  54. L. Sheng, J. Ren, Y. Miao, J. Wang, and E. Wang: PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens. Bioelectron. 26, 3494 (2011).

    Article  CAS  Google Scholar 

  55. H. Chang, L. Tang, Y. Wang, J. Jiang, and J. Li: Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 82, 2341 (2010).

    Article  CAS  Google Scholar 

  56. Y. Pu, Z. Zhu, D. Han, H. Liu, J. Liu, J. Liao, K. Zhang, and W. Tan: Insulin-binding aptamer-conjugated graphene oxide for insulin detection. Analyst 136, 4138 (2011).

    Article  CAS  Google Scholar 

  57. Y. He, Y. Lin, H. Tang, and D. Pang: A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nanoscale 4, 2054 (2012).

    Article  CAS  Google Scholar 

  58. H.L. Zhuang, S.J. Zhen, J. Wang, and C.Z. Huang: Sensitive detection of prion protein through long range resonance energy transfer between graphene oxide and molecular aptamer beacon. Anal. Methods 5, 208 (2013).

    Article  CAS  Google Scholar 

  59. Y. Huang, X. Chen, Y. Xia, S. Wu, N. Duan, X. Ma, and Z. Wang: Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin A. Anal. Methods 6, 690 (2014).

    Article  CAS  Google Scholar 

  60. Y. Huang, X. Chen, N. Duan, S. Wu, Z. Wang, X. Wei, and Y. Wang: Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chem. 166, 623 (2015).

    Article  CAS  Google Scholar 

  61. N. Duan, X. Ding, L. He, S. Wu, Y. Wei, and Z. Wang: Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control 33, 239 (2013).

    Article  CAS  Google Scholar 

  62. S. Wu, N. Duan, X. Ma, Y. Xia, H. Wang, Z. Wang, and Q. Zhang: Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal. Chem. 84, 6263 (2012).

    Article  CAS  Google Scholar 

  63. H. Kurt, M. Yüce, B. Hussain, and H. Budak: Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens. Bioelectron. 81, 280 (2016).

    Article  CAS  Google Scholar 

  64. J. Liu, C. Wang, Y. Jiang, Y. Hu, J. Li, S. Yang, Y. Li, R. Yang, W. Tan, and C.Z. Huang: Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecules. Anal. Chem. 85, 1424 (2013).

    Article  CAS  Google Scholar 

  65. Q. Liu, X. Xu, L. Zhang, X. Luo, and Y. Liang: Assembly of single-stranded polydeoxyadenylic acid and β-glucan probed by the sensing platform of graphene oxide based on the fluorescence resonance energy transfer and fluorescence anisotropy. Analyst 138, 2661 (2013).

    Article  CAS  Google Scholar 

  66. Y. Yu, Y. Liu, S.J. Zhen, and C.Z. Huang: A graphene oxide enhanced fluorescence anisotropy strategy for DNAzyme-based assay of metal ions. Chem. Commun. 49, 1942 (2013).

    Article  CAS  Google Scholar 

  67. M. Rajendran and A.D. Ellington: Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal. Bioanal. Chem. 390, 1067 (2008).

    Article  CAS  Google Scholar 

  68. Y. Wu, S. Zhan, L. Wang, and P. Zhou: Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 139, 1550 (2014).

    Article  CAS  Google Scholar 

  69. C. Apiwat, P. Luksirikul, P. Kankla, P. Pongprayoon, K. Treerattrakoon, K. Paiboonsukwong, S. Fucharoen, T. Dharakul, and D. Japrung: Graphene based aptasensor for glycated albumin in diabetes mellitus diagnosis and monitoring. Biosens. Bioelectron. 82, 140 (2016).

    Article  CAS  Google Scholar 

  70. Y. Wang, Z. Li, D. Hu, C.T. Lin, J. Li, and Y. Lin: Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132, 9274 (2010).

    Article  CAS  Google Scholar 

  71. X. Tan, T. Chen, X. Xiong, Y. Mao, G. Zhu, E. Yasun, C. Li, Z. Zhu, and W. Tan: Semi-quantification of ATP in live cells using nonspecific desorption of DNA from graphene oxide as internal reference. Anal. Chem. 84, 8622 (2012).

    Article  CAS  Google Scholar 

  72. P.J. Huang and J. Liu: Molecular beacon lighting up on graphene oxide. Anal. Chem. 84, 4192 (2012).

    Article  CAS  Google Scholar 

  73. Z. Liu, S. Chen, B. Liu, J. Wu, Y. Zhou, L. He, J. Ding, and J. Liu: Intracellular detection of ATP using an aptamer beacon covalently linked to graphene oxide resisting nonspecific probe displacement. Anal. Chem. 86, 12229 (2014).

    Article  CAS  Google Scholar 

  74. J. Song, P.S. Lau, M. Liu, S. Shuang, C. Dong, and Y. Li: A general strategy to create RNA aptamer sensors using “regulated” graphene oxide adsorption. ACS Appl. Mater. Interfaces 6, 21806 (2014).

    Article  CAS  Google Scholar 

  75. K. Furukawa, Y. Ueno, E. Tamechika, and H. Hibino: Protein recognition on a single graphene oxide surface fixed on a solid support. J. Mater. Chem. B 1, 1119 (2013).

    Article  CAS  Google Scholar 

  76. Y. Ueno, K. Furukawa, K. Matsuo, S. Inoue, K. Hayashi, and H. Hibino: Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface. Chem. Commun. 49, 10346 (2013).

    Article  CAS  Google Scholar 

  77. Y. Ueno, K. Furukawa, K. Matsuo, S. Inoue, K. Hayashi, and H. Hibino: On-chip graphene oxide aptasensor for multiple protein detection. Anal. Chim. Acta 866, 1 (2015).

    Article  CAS  Google Scholar 

  78. L. Liang, M. Su, L. Li, F. Lan, G. Yang, S. Ge, J. Yu, and X. Song: Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sens. Actuators, B 229, 347 (2016).

    Article  CAS  Google Scholar 

  79. P. Zuo, X. Li, D.C. Dominguez, and B.C. Ye: A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip 13, 3921 (2013).

    Article  CAS  Google Scholar 

  80. J.L. He, Z.S. Wu, H. Zhou, H.Q. Wang, J.H. Jiang, G.L. Shen, and R.Q. Yu: Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Anal. Chem. 82, 1358 (2010).

    Article  CAS  Google Scholar 

  81. L.P. Qiu, Z.S. Wu, G.L. Shen, and R.Q. Yu: Highly sensitive and selective bifunctional oligonucleotide probe for homogeneous parallel fluorescence detection of protein and nucleotide sequence. Anal. Chem. 83, 3050 (2011).

    Article  CAS  Google Scholar 

  82. J. Huang, Y. Chen, L. Yang, Z. Zhu, G. Zhu, X. Yang, K. Wang, and W. Tan: Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer. Biosens. Bioelectron. 28, 450 (2011).

    Article  CAS  Google Scholar 

  83. K. Hu, J. Liu, J. Chen, Y. Huang, S. Zhao, J. Tian, and G. Zhang: An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays. Biosens. Bioelectron. 42, 598 (2013).

    Article  CAS  Google Scholar 

  84. C.H. Li, X. Xiao, J. Tao, D.M. Wang, C.Z. Huang, and S.J. Zhen: A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element. Biosens. Bioelectron. 91, 149 (2017).

    Article  CAS  Google Scholar 

  85. C.H. Lu, J. Li, M.H. Lin, Y.W. Wang, H.H. Yang, X. Chen, and G.N. Chen: Amplified aptamer-based assay through catalytic recycling of the analyte. Angew. Chem., Int. Ed. 49, 8454 (2010).

    Article  CAS  Google Scholar 

  86. C. Su, C. Liu, J. Chen, Z. Chen, and Z. He: Simultaneous determination of zeatin and systemin by coupling graphene oxide-protected aptamers with catalytic recycling of DNase I. Sens. Actuators, B 230, 442 (2016).

    Article  CAS  Google Scholar 

  87. S. Guo, F. Yang, Y. Zhang, Y. Ning, Q. Yao, and G.J. Zhang: Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease. Anal. Methods 6, 3598 (2014).

    Article  CAS  Google Scholar 

  88. X. Liu, R. Aizen, R. Freeman, O. Yehezkeli, and I. Willner: Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: Application for logic gate operations. ACS Nano 6, 3553 (2012).

    Article  CAS  Google Scholar 

  89. C. Chen and B. Li: Graphene oxide-based homogenous biosensing platform for ultrasensitive DNA detection based on chemiluminescence resonance energy transfer and exonuclease III-assisted target recycling amplification. J. Mater. Chem. B 1, 2476 (2013).

    Article  CAS  Google Scholar 

  90. L. Cui, Z. Chen, Z. Zhu, X. Lin, X. Chen, and C.J. Yang: Stabilization of ssRNA on graphene oxide surface: An effective way to design highly robust RNA probes. Anal. Chem. 85, 2269 (2013).

    Article  CAS  Google Scholar 

  91. C. Chen, J. Zhao, J. Jiang, and R. Yu: A novel exonuclease III-aided amplification assay for lysozyme based on graphene oxide platform. Talanta 101, 357 (2012).

    Article  CAS  Google Scholar 

  92. S. Wu, N. Duan, X. Ma, Y. Xia, H. Wang, and Z. Wang: A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy. Anal. Chim. Acta 782, 59 (2013).

    Article  CAS  Google Scholar 

  93. K. Xiao, J. Liu, H. Chen, S. Zhang, and J. Kong: A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Biosens. Bioelectron. 91, 76 (2017).

    Article  CAS  Google Scholar 

  94. M. Liu, J. Song, S. Shuang, C. Dong, J.D. Brennan, and Y. Li: A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. ACS Nano 8, 5564 (2014).

    Article  CAS  Google Scholar 

  95. S. Jahanshahi-Anbuhi, K. Pennings, V. Leung, M. Liu, C. Carrasquilla, B. Kannan, Y. Li, R. Pelton, J.D. Brennan, and C.D. Filipe: Pullulan encapsulation of labile biomolecules to give stable bioassay tablets. Angew. Chem., Int. Ed. 53, 6155 (2014).

    Article  CAS  Google Scholar 

  96. M. Liu, C.Y. Hui, Q. Zhang, J. Gu, B. Kannan, S. Jahanshahi-Anbuhi, C.D. Filipe, J.D. Brennan, and Y. Li: Target-induced and equipment-free DNA amplification with a simple paper device. Angew. Chem., Int. Ed. 55, 2709 (2016).

    Article  CAS  Google Scholar 

  97. C. Carrasquilla, J.R. Little, Y. Li, and J.D. Brennan: Patterned paper sensors printed with long-chain DNA aptamers. Chem.–Eur. J. 21, 7369 (2015).

    Article  CAS  Google Scholar 

  98. B. Kannan, S. Jahanshahi-Anbuhi, R.H. Pelton, Y. Li, C.D. Filipe, and J.D. Brennan: Printed paper sensors for serum lactate dehydrogenase using pullulan-based inks to immobilize reagents. Anal. Chem. 87, 9288 (2015).

    Article  CAS  Google Scholar 

  99. P.Y. Hsieh, M. Monsur Ali, K. Tram, S. Jahanshahi-Anbuhi, C.L. Brown, J.D. Brennan, C.D. Filipe, and Y. Li: RNA protection is effectively achieved by pullulan film formation. ChemBioChem 18, 502 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingfu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manochehry, S., Liu, M., Chang, D. et al. Optical biosensors utilizing graphene and functional DNA molecules. Journal of Materials Research 32, 2973–2983 (2017). https://doi.org/10.1557/jmr.2017.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.103

Navigation