Skip to main content
Log in

Fluorescent sensors using DNA-functionalized graphene oxide

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the past few years, graphene oxide (GO) has emerged as a unique platform for developing DNA-based biosensors, given the DNA adsorption and fluorescence-quenching properties of GO. Adsorbed DNA probes can be desorbed from the GO surface in the presence of target analytes, producing a fluorescence signal. In addition to this initial design, many other strategies have been reported, including the use of aptamers, molecular beacons, and DNAzymes as probes, label-free detection, utilization of the intrinsic fluorescence of GO, and the application of covalently linked DNA probes. The potential applications of DNA-functionalized GO range from environmental monitoring and cell imaging to biomedical diagnosis. In this review, we first summarize the fundamental surface interactions between DNA and GO and the related fluorescence-quenching mechanism. Following that, the various sensor design strategies are critically compared. Problems that must be overcome before this technology can reach its full potential are described, and a few future directions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  3. Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    CAS  Google Scholar 

  4. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    CAS  Google Scholar 

  5. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    CAS  Google Scholar 

  6. Yang WR, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138

    CAS  Google Scholar 

  7. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648

    CAS  Google Scholar 

  8. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212

    Google Scholar 

  9. Pumera M (2011) Graphene in biosensing. Mater Today 14(7–8):308–315

    CAS  Google Scholar 

  10. Perez-Lopez B, Merkoci A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    CAS  Google Scholar 

  11. Morales-Narvaez E, Merkoci A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308

    CAS  Google Scholar 

  12. Ma H, Wu D, Cui Z, Li Y, Zhang Y, Du B, Wei Q (2013) Graphene-based optical and electrochemical biosensors: a review. Anal Lett 46:1–17

    Google Scholar 

  13. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307

    CAS  Google Scholar 

  14. Artiles MS, Rout CS, Fisher TS (2011) Graphene-based hybrid materials and devices for biosensing. Adv Drug Deliv Rev 63:1352–1360

    CAS  Google Scholar 

  15. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    CAS  Google Scholar 

  16. Premkumar T, Geckeler KE (2012) Graphene-DNA hybrid materials: assembly, applications, and prospects. Prog Polym Sci 37:515–529

    CAS  Google Scholar 

  17. Lu C, Yang H, Zhu C, Chen X, Chen G (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787

    CAS  Google Scholar 

  18. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  Google Scholar 

  19. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  Google Scholar 

  20. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    CAS  Google Scholar 

  21. Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743

    CAS  Google Scholar 

  22. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    CAS  Google Scholar 

  23. Cho EJ, Lee J-W, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2:241–264

    CAS  Google Scholar 

  24. Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17:580–588

    CAS  Google Scholar 

  25. Navani NK, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281

    CAS  Google Scholar 

  26. Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641

    Google Scholar 

  27. Tombelli S, Minunni A, Mascini A (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424–2434

    CAS  Google Scholar 

  28. Tan W, Donovan M, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113:2842–2862

    CAS  Google Scholar 

  29. Zhou W, Jimmy Huang PJ, Ding J, Liu J (2014) Aptamer-based biosensors for biomedical diagnostics. Analyst. 139:2627–2640

    CAS  Google Scholar 

  30. Li T, Dong S, Wang E (2010) A lead(II)-driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity. J Am Chem Soc 132:13156–13157

    CAS  Google Scholar 

  31. Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y (2008) Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem Commun 4825-4827

  32. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    CAS  Google Scholar 

  33. Wang H, Yang R, Yang L, Tan W (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460

    CAS  Google Scholar 

  34. Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9:2363–2371

    CAS  Google Scholar 

  35. Katz E, Willner I (2004) Nanobiotechnology: integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    CAS  Google Scholar 

  36. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    CAS  Google Scholar 

  37. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613

    CAS  Google Scholar 

  38. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    CAS  Google Scholar 

  39. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nano 4:217–224

    CAS  Google Scholar 

  40. Schniepp HC, Li J, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539

    CAS  Google Scholar 

  41. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    CAS  Google Scholar 

  42. Gomez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U (2010) Atomic structure of reduced graphene oxide. Nano Lett 10:1144–1148

    CAS  Google Scholar 

  43. Dovbeshko GI, Repnytska OP, Obraztsova ED, Shtogun YV (2003) DNA interaction with single-walled carbon nanotubes: a SEIRA study. Chem Phys Lett 372:432–437

    CAS  Google Scholar 

  44. Antony J, Grimme S (2008) Structures and interaction energies of stacked graphene-nucleobase complexes. Phys Chem Chem Phys 10:2722–2729

    CAS  Google Scholar 

  45. Ortmann F, Schmidt WG, Bechstedt F (2005) Attracted by long-range electron correlation: adenine on graphite. Phys Rev Lett 95:186101

    CAS  Google Scholar 

  46. Gowtham S, Scheicher RH, Ahuja R, Pandey R, Karna SP (2007) Physisorption of nucleobases on graphene: density-functional calculations. Phys Rev B 76:033401

    Google Scholar 

  47. Varghese N, Mogera U, Govindaraj A, Das A, Maiti PK, Sood AK, Rao CNR (2009) Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem 10:206–210

    CAS  Google Scholar 

  48. He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459

    CAS  Google Scholar 

  49. Manohar S, Mantz AR, Bancroft KE, Hui C-Y, Jagota A, Vezenov DV (2008) Peeling single-stranded DNA from graphite surface to determine oligonucleotide binding energy by force spectroscopy. Nano Lett 8:4365–4372

    CAS  Google Scholar 

  50. Huang PJ, Liu J (2012) Molecular beacon lighting up on graphene oxide. Anal Chem 84:4192–4198

    CAS  Google Scholar 

  51. Park JS, Na H-K, Min D-H, Kim D-E (2013) Desorption of single-stranded nucleic acids from graphene oxide by disruption of hydrogen bonding. Analyst 138:1745–1749

    CAS  Google Scholar 

  52. Cote LJ, Kim J, Zhang Z, Sun C, Huang JX (2010) Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties. Soft Matter 6:6096–6101

    CAS  Google Scholar 

  53. Liu J (2012) Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications. Phys Chem Chem Phys 14:10485–10496

    CAS  Google Scholar 

  54. Wu M, Kempaiah R, Huang P-JJ, Maheshwari V, Liu J (2011) Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27:2731–2738

    CAS  Google Scholar 

  55. Lei H, Mi L, Zhou X, Chen J, Hu J, Guo S, Zhang Y (2011) Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion. Nanoscale 3:3888–3892

    CAS  Google Scholar 

  56. Tang L, Chang H, Liu Y, Li J (2012) Duplex DNA/graphene oxide biointerface: from fundamental understanding to specific enzymatic effects. Adv Funct Mater 22:3083–3088

    CAS  Google Scholar 

  57. Huang P-J, Liu J (2013) Separation of short single- and double-stranded DNA based on their adsorption kinetics difference on graphene oxide. Nanomaterials 3:221–228

    CAS  Google Scholar 

  58. Liu B, Sun Z, Zhang X, Liu J (2013) Mechanisms of DNA sensing on graphene oxide. Anal Chem 85:7987–7993

    CAS  Google Scholar 

  59. Zhao X (2011) Self-assembly of DNA segments on graphene and carbon nanotube arrays in aqueous solution: a molecular simulation study. J Phys Chem C 115:6181–6189

    CAS  Google Scholar 

  60. Kim J, Cote LJ, Kim F, Huang J (2010) Visualizing graphene based sheets by fluorescence quenching microscopy. J Am Chem Soc 132:260–267

    CAS  Google Scholar 

  61. Huang P-JJ, Liu J (2012) DNA-length-dependent fluorescence signaling on graphene oxide surface. Small 8:977–983

    CAS  Google Scholar 

  62. Jennings TL, Singh MP, Strouse GF (2006) Fluorescent lifetime quenching near d=1.5 nm gold nanoparticles: probing NSET validity. J Am Chem Soc 128:5462–5467

    CAS  Google Scholar 

  63. Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF (2005) Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 127:3115–3119

    CAS  Google Scholar 

  64. Swathi RS, Sebastian KL (2009) Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. J Chem Phys 130:086101

    CAS  Google Scholar 

  65. Swathi RS, Sebastian KL (2008) Resonance energy transfer from a dye molecule to graphene. J Chem Phys 129:054703

    CAS  Google Scholar 

  66. Chen Y, O’Donoghue MB, Huang YF, Kang H, Phillips JA, Chen X, Estevez MC, Yang CJ, Tan W (2010) A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J Am Chem Soc 132:16559–16570

    CAS  Google Scholar 

  67. Jeng ES, Moll AE, Roy AC, Gastala JB, Strano MS (2006) Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett 6:371–375

    CAS  Google Scholar 

  68. Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, Tang Z, Wu YR, Zhu Z, Tan W (2008) Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc 130:8351–8358

    CAS  Google Scholar 

  69. Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346

    CAS  Google Scholar 

  70. He Y, Lin Y, Tang H, Pang D (2012) A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nanoscale 4:2054–2059

    CAS  Google Scholar 

  71. Li M, Zhou X, Guo S, Wu N (2013) Detection of lead(II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74

  72. Wang H, Chen T, Wu S, Chu X, Yu R (2012) A novel biosensing strategy for screening G-quadruplex ligands based on graphene oxide sheets. Biosens Bioelectron 34:88–93

    Google Scholar 

  73. Huang P-JJ, Kempaiah R, Liu J (2011) Synergistic pH effect for reversible shuttling aptamer-based biosensors between graphene oxide and target molecules. J Mater Chem 21:8991–8993

    CAS  Google Scholar 

  74. Zhang M, Yin BC, Tan W, Ye BC (2011) A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets. Biosens Bioelectron 26:3260–3265

    CAS  Google Scholar 

  75. Pei H, Li J, Lv M, Wang J, Gao J, Lu J, Li Y, Huang Q, Hu J, Fan C (2012) A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. J Am Chem Soc 134:13843–13849

    CAS  Google Scholar 

  76. Liu J, Wang C, Jiang Y, Hu Y, Li J, Yang S, Li Y, Yang R, Tan W, Huang CZ (2013) Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecules. Anal Chem 85:1424–1430

    CAS  Google Scholar 

  77. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    CAS  Google Scholar 

  78. Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W (2009) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed 48:856–870

    CAS  Google Scholar 

  79. Li F, Huang Y, Yang Q, Zhong Z, Li D, Wang L, Song S, Fan C (2010) A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale 2:1021–1026

    CAS  Google Scholar 

  80. Lu CH, Li J, Liu JJ, Yang HH, Chen X, Chen GN (2010) Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the “nanoquencher.” Chem Eur J 16:4889–4894

  81. Zhou J, Lu Q, Tong Y, Wei W, Liu S (2012) Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide. Talanta 99:625–630

    CAS  Google Scholar 

  82. Hwang GT, Seo YJ, Kim BH (2004) A highly discriminating quencher-free molecular beacon for probing DNA. J Am Chem Soc 126:6528–6529

    CAS  Google Scholar 

  83. Yi JW, Park J, Singh NJ, Lee IJ, Kim KS, Kim BH (2011) Quencher-free molecular beacon: enhancement of the signal-to-background ratio with graphene oxide. Bioorg Med Chem Lett 21:704–706

    CAS  Google Scholar 

  84. Huang J, Zheng Q, Kim JK, Li Z (2013) A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosens Bioelectron 43:379–383

    CAS  Google Scholar 

  85. Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547

    CAS  Google Scholar 

  86. Lu CH, Zhu CL, Li J, Liu JJ, Chen X, Yang HH (2010) Using graphene to protect DNA from cleavage during cellular delivery. Chem Commun 46:3116–3118

    CAS  Google Scholar 

  87. Li XL, Shan S, Xiong M, Xia XH, Xu JJ, Chen HY (2013) On-chip selective capture of cancer cells and ultrasensitive fluorescence detection of survivin mRNA in a single living cell. Lab Chip 13:3868–3875

    CAS  Google Scholar 

  88. Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–665

    CAS  Google Scholar 

  89. Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274–9276

    CAS  Google Scholar 

  90. Wang Y, Li Z, Weber TJ, Hu D, Lin CT, Li J, Lin Y (2013) In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal Chem 85:6775–6782

    CAS  Google Scholar 

  91. Tan X, Chen T, Xiong X, Mao Y, Zhu G, Yasun E, Li C, Zhu Z, Tan W (2012) Semiquantification of ATP in live cells using nonspecific desorption of DNA from graphene oxide as the internal reference. Anal Chem 84:8622–8627

    CAS  Google Scholar 

  92. Li XM, Song J, Cheng T, Fu PY (2013) A duplex-triplex nucleic acid nanomachine that probes pH changes inside living cells during apoptosis. Anal Bioanal Chem 405:5993–5999

    CAS  Google Scholar 

  93. Kotikam V, Fernandes M, Kumar VA (2012) Comparing the interactions of DNA, polyamide (PNA) and polycarbamate nucleic acid (PCNA) oligomers with graphene oxide (GO). Phys Chem Chem Phys 14:15003–15006

    CAS  Google Scholar 

  94. Guo S, Du D, Tang L, Ning Y, Yao Q, Zhang GJ (2013) PNA-assembled graphene oxide for sensitive and selective detection of DNA. Analyst 138:3216–3220

    CAS  Google Scholar 

  95. Rana M, Balcioglu M, Robertson N, Yigit MV (2014) Nano-graphene oxide as a novel platform for monitoring the effect of LNA modification on nucleic acid interactions. Analyst 139:714–720

    CAS  Google Scholar 

  96. Sheng L, Ren J, Miao Y, Wang J, Wang E (2011) PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens Bioelectron 26:3494–3499

    CAS  Google Scholar 

  97. Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46:2596–2598

    CAS  Google Scholar 

  98. Wu C, Zhou Y, Miao X, Ling L (2011) A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide. Analyst 136:2106–2110

    CAS  Google Scholar 

  99. Hu K, Yang H, Zhou J, Zhao S, Tian J (2013) Aptasensor for amplified IgE sensing based on fluorescence quenching by graphene oxide. Luminescence 28:662–666

    CAS  Google Scholar 

  100. Park JS, Baek A, Park IS, Jun BH, Kim DE (2013) A graphene oxide-based platform for the assay of RNA synthesis by RNA polymerase using a fluorescent peptide nucleic acid probe. Chem Commun 49:9203–9205

    CAS  Google Scholar 

  101. Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517

    CAS  Google Scholar 

  102. Liu C, Wang Z, Jia H, Li Z (2011) Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. Chem Commun 47:4661–4663

    CAS  Google Scholar 

  103. Jang H, Kim YK, Kwon HM, Yeo WS, Kim DE, Min DH (2010) A graphene-based platform for the assay of duplex-DNA unwinding by helicase. Angew Chem Int Ed 49:5703–5707

    CAS  Google Scholar 

  104. Xing XJ, Liu XG, Yue H, Luo QY, Tang HW, Pang DW (2012) Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Biosens Bioelectron 37:61–67

    CAS  Google Scholar 

  105. Li J, Huang Y, Wang D, Song B, Li Z, Song S, Wang L, Jiang B, Zhao X, Yan J, Liu R, He D, Fan C (2013) A power-free microfluidic chip for SNP genotyping using graphene oxide and a DNA intercalating dye. Chem Commun 49:3125–3127

    CAS  Google Scholar 

  106. Jiang Y, Tian J, Chen S, Zhao Y, Wang Y, Zhao S (2013) A graphene oxide-based sensing platform for the label-free assay of DNA sequence and exonuclease activity via long range resonance energy transfer. J Fluoresc 23:697–703

    CAS  Google Scholar 

  107. Zhu X, Zhou X, Xing D (2013) Label-free detection of microRNA: two-step signal enhancement with a hairpin-probe-based graphene fluorescence switch and isothermal amplification. Chem Eur J 19:5487–5494

    CAS  Google Scholar 

  108. Tang L, Wang Y, Liu Y, Li J (2011) DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay. ACS Nano 5:3817–3822

    CAS  Google Scholar 

  109. Piao Y, Liu F, Seo TS (2011) The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5-graphene oxide. Chem Commun 47:12149–12151

    CAS  Google Scholar 

  110. Furukawa K, Ueno Y, Tamechika E, Hibino H (2013) Protein recognition on a single graphene oxide surface fixed on a solid support. J Mater Chem B 1:1119–1124

    CAS  Google Scholar 

  111. Ueno Y, Furukawa K, Matsuo K, Inoue S, Hayashi K, Hibino H (2013) Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface. Chem Commun 49:10346–10348

    CAS  Google Scholar 

  112. Xu L, Yang X (2014) Molecular dynamics simulation of adsorption of pyrene-polyethylene glycol onto graphene. J Colloid Interface Sci 418:66–73

    CAS  Google Scholar 

  113. Sun Y, Yang S, Zhao G, Wang Q, Wang X (2013) Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides. Chem Asian J 8:2755–2761

    CAS  Google Scholar 

  114. Wang F, Liu J (2014) Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide. Nanoscale. 6:7079–7084

    CAS  Google Scholar 

  115. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476

    CAS  Google Scholar 

  116. Singh SK, Singh MK, Nayak MK, Kumari S, Gracio JJA, Dash D (2011) Size distribution analysis and physical/fluorescence characterization of graphene oxide sheets by flow cytometry. Carbon 49:684–692

    CAS  Google Scholar 

  117. Li M, Zhou X, Ding W, Guo S, Wu N (2013) Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosens Bioelectron 41:889–893

    Google Scholar 

  118. Liu F, Choi JY, Seo TS (2010) Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens Bioelectron 25:2361–2365

    CAS  Google Scholar 

  119. Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94:4262–4266

  120. Li J, Lu Y (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc 122:10466–10467

    CAS  Google Scholar 

  121. Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229

    CAS  Google Scholar 

  122. Zhang X-B, Kong R-M, Lu Y (2011) Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem 4:105–128

    CAS  Google Scholar 

  123. Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF (2011) Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 44:903–913

    CAS  Google Scholar 

  124. Liu M, Zhao H, Chen S, Yu H, Zhang Y, Quan X (2011) A “turn-on” fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme. Biosens Bioelectron 26:4111–4116

    CAS  Google Scholar 

  125. Yu Y, Liu Y, Zhen SJ, Huang CZ (2013) A graphene oxide enhanced fluorescence anisotropy strategy for DNAzyme-based assay of metal ions. Chem Commun 49:1942–1944

    CAS  Google Scholar 

  126. Lu CH, Li J, Lin MH, Wang YW, Yang HH, Chen X, Chen GN (2010) Amplified aptamer-based assay through catalytic recycling of the analyte. Angew Chem Int Ed Engl 49:8454–8457

    CAS  Google Scholar 

  127. Pu Y, Zhu Z, Han D, Liu H, Liu J, Liao J, Zhang K, Tan W (2011) Insulin-binding aptamer-conjugated graphene oxide for insulin detection. Analyst 136:4138–4140

    CAS  Google Scholar 

  128. Cui L, Lin X, Lin N, Song Y, Zhu Z, Chen X, Yang CJ (2012) Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chem Commun 48:194–196

    CAS  Google Scholar 

  129. Zhao XH, Ma QJ, Wu XX, Zhu X (2012) Graphene oxide-based biosensor for sensitive fluorescence detection of DNA based on exonuclease III-aided signal amplification. Anal Chim Acta 727:67–70

    CAS  Google Scholar 

  130. Liu X, Aizen R, Freeman R, Yehezkeli O, Willner I (2012) Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations. ACS Nano 6:3553–3563

    CAS  Google Scholar 

  131. Chen C, Zhao J, Jiang J, Yu R (2012) A novel exonuclease III-aided amplification assay for lysozyme based on graphene oxide platform. Talanta 101:357–361

    CAS  Google Scholar 

  132. Yang L, Liu C, Ren W, Li Z (2012) Graphene surface-anchored fluorescence sensor for sensitive detection of microRNA coupled with enzyme-free signal amplification of hybridization chain reaction. ACS Appl Mater Interfaces 4:6450–6453

    CAS  Google Scholar 

  133. Chang G, Hu J, Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X (2012) Carbon nanocapsules as an effective sensing platform for fluorescence-enhanced nucleic acid detection. J Nanosci Nanotechnol 12:3775–3780

    CAS  Google Scholar 

  134. Piao Y, Liu F, Seo TS (2012) A novel molecular beacon bearing a graphite nanoparticle as a nanoquencher for in situ mRNA detection in cancer cells. ACS Appl Mater Interfaces 4:6785–6789

    CAS  Google Scholar 

  135. Zhai J, Li H, Sun X (2011) A novel application of porphyrin nanoparticles as an effective fluorescent assay platform for nucleic acid detection. RSC Adv 1(1):36–39

    CAS  Google Scholar 

  136. Li H, Zhang Y, Wu T, Liu S, Wang L, Sun X (2011) Carbon nanospheres for fluorescent biomolecular detection. J Mater Chem 21:4663–4668

    CAS  Google Scholar 

  137. Li H, Zhang Y, Wang L, Tian J, Sun X (2011) Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun 47:961–963

    CAS  Google Scholar 

  138. Li H, Zhang Y, Luo Y, Sun X (2011) Nano-C60: a novel, effective, fluorescent sensing platform for biomolecular detection. Small 7:1562–1568

    CAS  Google Scholar 

  139. Zhang X, Wang F, Liu B, Kelly EY, Servos MR, Liu J (2014) Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir 30:839–845

    CAS  Google Scholar 

  140. Pautler R, Kelly EY, Huang PJ, Cao J, Liu B, Liu J (2013) Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching. ACS Appl Mater Interfaces 5(15):6820–6825

    CAS  Google Scholar 

  141. Wang F, Liu B, Huang P-JJ, Liu J (2013) Rationally designed nucleobase and nucleotide coordinated nanoparticles for selective DNA adsorption and detection. Anal Chem 85:12144–12151

    CAS  Google Scholar 

  142. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001

    CAS  Google Scholar 

  143. Xi Q, Zhou DM, Kan YY, Ge J, Wu ZK, Yu RQ, Jiang JH (2014) Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Anal Chem 86:1361–1365

    CAS  Google Scholar 

  144. Lin Q, Zou X, Zhou G, Liu R, Wu J, Li J, Duan W (2011) Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study. Phys Chem Chem Phys 13:12225–12230

    CAS  Google Scholar 

  145. Ding N, Chen X, Wu CM, Li H (2013) Adsorption of nucleobase pairs on hexagonal boron nitride sheet: hydrogen bonding versus stacking. Phys Chem Chem Phys 15:10767–10776

    CAS  Google Scholar 

  146. Li F, Pei H, Wang L, Lu J, Gao J, Jiang B, Zhao X, Fan C (2013) Nanomaterial-based fluorescent DNA analysis: a comparative study of the quenching effects of graphene oxide, carbon nanotubes, and gold nanoparticles. Adv Funct Mater 23:4140–4148

    CAS  Google Scholar 

Download references

Acknowledgments

The related work from the Liu lab at the University of Waterloo is supported by the NSERC of Canada, the Early Researcher Award from the Ontario Ministry of Research and Innovation, and the University of Waterloo. This work is also supported by the Foundation for Shenghua Scholar, the National Natural Science Foundation of China (grant nos. 81301258, 21301195), the Postdoctoral Science Foundation of Central South University and Hunan province (grant no. 124896), the China Postdoctoral Science Foundation (grant no. 2013M540644), the Hunan Provincial Natural Science Foundation of China (grant no. 13JJ4029), the International Postdoctoral Exchange Fellowship Program (grant no. [2014]29), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (grant no. 20130162120078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juewen Liu.

Additional information

Published in the topical collection Graphene in Analytics with guest editors Martin Pumera, Ronen Polsky, and Craig Banks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, B., Ding, J. et al. Fluorescent sensors using DNA-functionalized graphene oxide. Anal Bioanal Chem 406, 6885–6902 (2014). https://doi.org/10.1007/s00216-014-7888-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7888-3

Keywords

Navigation