Skip to main content
Log in

Study on MnOx-FeOy composite oxide catalysts prepared by supercritical antisolvent process for low-temperature selective catalytic reduction of NOx

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the MnOx-FeOy hollow nanospheres with solid solution structure were prepared by supercritical antisolvent (SAS) process. The average particle size was about 50 nm, and average pore diameter was 7 nm. By applying the SAS method, novel nonsupported MnOx-FeOy catalysts with a Mn/Fe mass ratio of 1:1 showed rather high selective catalytic reduction activity and broad active temperature window. The NOx conversion rate reached 97% at 220 °C, and maintained above 92% from 180 to 260 °C. The experiment results showed that iron doping could cause the apparent change of MnOx morphology and structure, which enhanced the oxidative ability of manganese species and increased surface active oxygen species. Meanwhile, compared with traditional methods, the SAS process could efficiently enhance the interaction between manganese and iron, and produce smaller size and larger pore volume nanoparticles with more active sites on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. P.R. Ettireddy, N. Ettireddy, and P.G. Smirniotis: Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl. Catal., B 76 (1), 123 (2007).

    Article  CAS  Google Scholar 

  2. X.L. Tang, J.M. Hao, H.H. Yi, and J.H. Li: Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catal. Today 126 (3), 406 (2007).

    Article  CAS  Google Scholar 

  3. Q.C. Lin, J.M. Hao, and J.H. Li: Fe promotion effect in Mn/USY for low-temperature selective catalytic reduction of NO with NH3. Chin. Chem. Lett. 17 (7), 991 (2006).

    CAS  Google Scholar 

  4. J.H. Huang, Z.Q. Tong, and Y. Huang: Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Appl. Catal., B 78 (3), 309 (2008).

    Article  CAS  Google Scholar 

  5. H.X. Jiang, J. Zhao, D.Y. Jiang, and M.H. Zhang: Hollow MnOx–CeO2 nanospheres prepared by a green route: A novel low-temperature NH3-SCR catalyst. Catal. Lett. 144 (2), 325 (2014).

    Article  CAS  Google Scholar 

  6. T. Lin, H.D. Xu, and Y.Q. Chen: Integral type Mn–Fe/ZrO2–TiO2 catalyst preparation and low temperature NH3-SCR reaction activity. Chem. J. Chin. Univ. 30 (11), 2240 (2009).

    CAS  Google Scholar 

  7. Z.B. Wu, B.Q. Jiang, and Y. Liu: Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl. Catal., B 79 (4), 347 (2008).

    Article  CAS  Google Scholar 

  8. S.J. Yang, C.Z. Wang, J.H. Li, and N.Q. Yan: Low temperature selective catalytic reduction of no with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study. Appl. Catal., B 110, 71 (2011).

    Article  CAS  Google Scholar 

  9. R.Q. Long, R.T. Yang, and R. Chang: Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe–Mn based catalysts. Chem. Commun. 5, 452 (2002).

    Article  Google Scholar 

  10. H.X. Jiang, P. Huang, and M.H. Zhang: Controllable synthesis of Ce1−xZrxO2 hollow nanospheres via supercritical anti-solvent precipitation. Mater. Charact. 63, 98 (2012).

    Article  CAS  Google Scholar 

  11. H.Q. Wang, H.X. Jiang, L. Kuang, and M.H. Zhang: Synthesis of highly dispersed MnOx–CeO2 nanospheres by surfactant-assisted supercritical anti-solvent (SAS) technique: The important role of the surfactant. J. Supercrit. Fluids 92, 84 (2014).

    Article  CAS  Google Scholar 

  12. H.X. Jiang, H.Q. Wang, G.M. Li, and M.H. Zhang: Synthesis of MnOx–CeO2·NOx catalysts by polyvinylpyrrolidone-assisted supercritical anti-solvent precipitation. J. Mater. Res. 29 (18), 2188 (2014).

    Article  CAS  Google Scholar 

  13. D.Y. Jiang, M.H. Zhang, and H.X. Jiang: Preparation and formation mechanism of nano-sized MnOx–CeO2 hollow spheres via a supercritical anti-solvent technique. Mater. Lett. 65 (8), 1222 (2011).

    Article  CAS  Google Scholar 

  14. P. Huang, H.X. Jiang, and M.H. Zhang: Structures and oxygen storage capacities of CeO2–ZrO2–Al2O3 ternary oxides prepared by a green route: Supercritical anti-solvent precipitation. J. Rare Earth 30 (6), 524 (2012).

    Article  CAS  Google Scholar 

  15. S.A. Al-Sayari: Catalytic conversion of syngas to olefins over Mn–Fe catalysts. Ceram. Int. 40 (1), 723 (2014).

    Article  CAS  Google Scholar 

  16. A.A. Ismail: Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol-gel method. Appl. Catal., B 58 (1), 115 (2005).

    Article  CAS  Google Scholar 

  17. J. Wang, J. Wen, and M.Q. Shen: Effect of interaction between Ce0.7Zr0.3O2 and Al2O3 on structural characteristics, thermal stability, and oxygen storage capacity. J. Phys. Chem. C 112 (13), 5113 (2008).

    Article  CAS  Google Scholar 

  18. H.J. Cui, J.K. Cai, J.W. Shi, and M.L. Fu: Fabrication of 3D porous Mn doped a-Fe2O3 nanostructures for the removal of heavy metals from wastewater. RSC Adv. 4, 10176 (2014).

    Article  CAS  Google Scholar 

  19. L.H. Huo, N.S. Chen, and J.L. Huang: Infrared spectrum of gas-sensitive α-Fe2O3 nano-powder. J. Light Scattering 11 (2), 170 (1999).

    Google Scholar 

  20. S. Hayashi and H. Kanamori: Infrared study of surface phonon modes in α-Fe2O3 microcrystals. J. Phys. C: Solid State Phys. 13 (8), 1529 (1980).

    Article  CAS  Google Scholar 

  21. X.Y. Wang, Q. Kang, and D. Li: Catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts. Appl. Catal., B 86 (3), 166 (2009).

    CAS  Google Scholar 

  22. Y.L. Wang, C.Z. Ge, and L. Zhan: MnOx–CeO2/activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperatures. Ind. Eng. Chem. Res. 51 (36), 11667 (2012).

    Article  CAS  Google Scholar 

  23. Z.M. Liu, Y. Li, and T.L. Zhu: Selective catalytic reduction of NOx by NH3 over Mn-promoted V2O5/TiO2 catalyst. Ind. Eng. Chem. Res. 53 (33), 12964 (2014).

    Article  CAS  Google Scholar 

  24. Q.W. Tang, L.H. Jiang, J. Liu, and G.Q. Sun: Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal. 4 (2), 457 (2014).

    Article  CAS  Google Scholar 

  25. C.C. Huang, N.H. Khu, and C.S. Yeh: The characteristics of sub 10 nm manganese oxide T1 contrast agents of different nanostructured morphologies. Biomaterials 31 (14), 4073 (2010).

    Article  CAS  Google Scholar 

  26. F.D. Liu, H. He, Y. Ding, and C.B. Zhang: Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Appl. Catal., B 93 (1), 194 (2009).

    Article  CAS  Google Scholar 

  27. H.H. Zhao, G.Y. Xie, and Z.Y. Liu: CuO/Al2O3 catalyst surface acidity and reactivity study by in situ DRIFTS-mass spectrometry technology. Acta Chim. Sin. 66 (9), 1021 (2008).

    CAS  Google Scholar 

  28. R.Q. Long and R.T. Yang: Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts. J. Catal. 186 (2), 254 (1999).

    Article  CAS  Google Scholar 

  29. N.Y. Topsøe: Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science 265 (5176), 1217 (1994).

    Article  Google Scholar 

  30. G. Ramis, L. Yi, G. Busca, and M. Turco: Adsorption, activation, and oxidation of ammonia over SCR catalysts. J. Catal. 157 (2), 523 (1995).

    Article  CAS  Google Scholar 

  31. J.M.G. Amores, V.S. Escribano, G. Ramis, and G. Busca: An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides. Appl. Catal., B 13 (1), 45 (1997).

    Article  Google Scholar 

  32. L. Ma, J.H. Li, W.B. Shi, and H. Arandiyan: Influence of calcination temperature on Fe/HBEA catalyst for the selective catalytic reduction of NOx with NH3. Catal. Today 184 (1), 145 (2012).

    Article  CAS  Google Scholar 

  33. F. Eigenmann, M. Maciejewski, and A. Baiker: Selective reduction of no by NH3 over manganese-cerium mixed oxides: Relation between adsorption, redox and catalytic behavior. Appl Catal., B 62 (3), 311 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 20976120) and Natural Science Foundation of Tianjin (No. 09JCYBJC06200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Zhang, L., Zhao, J. et al. Study on MnOx-FeOy composite oxide catalysts prepared by supercritical antisolvent process for low-temperature selective catalytic reduction of NOx. Journal of Materials Research 31, 702–712 (2016). https://doi.org/10.1557/jmr.2016.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.51

Navigation