Skip to main content
Log in

Observation of compound semiconductors and heterovalent interfaces using aberration-corrected scanning transmission electron microscopy

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper reviews our recent investigations of compound semiconductors and heterovalent interfaces using the technique of aberration-corrected scanning transmission electron microscopy. Bright-field imaging of compound semiconductors with a collection angle that is comparable in size to the incident-beam convergence angle is demonstrated to provide better atomic-column visibility for lighter elements in comparison with the more traditional high-angle annular-dark-field approach. Several pairs of Group II–VI/Group III–V compound semiconductors with zincblende structure have been studied in detail. These combinations are all valence-mismatched (i.e., heterovalent), and include CdTe/InSb (Δa/a≤ 0.05%), ZnTe/InP (Δa/a = 3.8%), and ZnTe/GaAs (Δa/a = 7.4%). CdTe/InSb (001) interfaces are observed to be defect-free with a slight lattice contraction at the interface plane. For interfaces with larger lattice-parameter mismatch, the primary interfacial defects are identified as Lomer edge dislocations and perfect 60° dislocations. However, the atomic structure of the dislocation cores has not yet been unambiguously determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Y-H. Zhang, S.N. Wu, D. Ding, S.Q. Yu, and S.R. Johnson: A proposal for monolithographically integrated multijunction solar cells using lattice-matched II/VI and III/V semiconductors. Presented at the Proc. 33rd IEEE Photovoltaics Specialists Conference, 2008; pp. 1–5.

  2. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, and K. Urban: Electron microscopy image enhanced. Nature 392, 768 (1998).

    Article  CAS  Google Scholar 

  3. O.L. Krivanek, N. Dellby, and A.R. Lupini: Towards sub-Å electron beams. Ultramicroscopy 78, 1 (1999).

    Article  CAS  Google Scholar 

  4. D.J. Smith: Development of aberration-corrected electron microscopy. Microsc. Microanal. 14, 2 (2008).

    Article  CAS  Google Scholar 

  5. D.J. Smith, T. Aoki, J. Mardinly, L. Zhou, and M.R. McCartney: Exploring aberration-corrected electron microscopy for compound semiconductors. Microscopy 62 (Suppl. 1), S65 (2013).

    Article  Google Scholar 

  6. C. Wang, D.J. Smith, S. Tobin, T. Parodos, J. Zhao, Y. Chang, and S. Sivananthan: Understanding ion-milling damage in Hg1−xCdxTe epilayers. J. Vac. Sci. Technol., A 24, 995 (2006).

    Article  CAS  Google Scholar 

  7. O. Scherzer: Über einige Fehler von Elektronenlinsen (Some defects of electron lenses). Optik 101, 593 (1936).

    Google Scholar 

  8. W. Coene, G. Janssen, M. Op De Beeck, and D. van Dyck: Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys. Rev. Lett. 69, 3743 (1992).

    Article  CAS  Google Scholar 

  9. A. Orchowski, W.D. Rau, and H. Lichte: Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399 (1995).

    Article  CAS  Google Scholar 

  10. L. Zhou, E. Dimakis, R. Hathwar, T. Aoki, D.J. Smith, T.D. Moustakas, S.M. Goodnick, and M.R. McCartney: Measurement and effects of polarization fields on one-monolayer-thick InN/GaN multiple quantum wells. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 125310 (2013).

    Article  Google Scholar 

  11. S.J. Pennycook, M.F. Chisholm, A.R. Lupini, M. Varela, K. van Benthem, M.P. Oxley, W. Luo, and S.T. Pantelides: Materials applications of aberration-corrected scanning transmission electron microscopy. Adv. Imaging Electron Phys. 153, 327 (2008).

    Article  CAS  Google Scholar 

  12. S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, Y. Yamamoto, and Y. Ikuhara: Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 191913 (2009).

    Article  Google Scholar 

  13. T. Aoki, J. Lu, M.R. McCartney, and D.J. Smith: Large-collection-angle bright-field imaging of compound semiconductors using aberration-corrected scanning transmission electron microscopy. Semicond. Sci. Technol. 31, 094002 (2016).

    Article  Google Scholar 

  14. E.H. Steenbergen, Y. Huang, J-H. Ryou, L. Ouyang, J-J. Li, D.J. Smith, R.D. Dupuis, and Y-H. Zhang: Structural and optical characterization of type-II InAs/InAs1−xSbx superlattices grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 99, 071111 (2011).

    Article  Google Scholar 

  15. J. Lu, E. Luna, T. Aoki, E.H. Steenbergen, Y-H. Zhang, and D.J. Smith: Evaluation of antimony segregation in InAs/InAs1−xSbx type-II superlattices grown by molecular beam epitaxy. J. Appl. Phys. 119, 095702 (2016).

    Article  Google Scholar 

  16. G.M. Williams, C.R. Whitehouse, A.G. Cullis, N.G. Chew, and G.W. Blackmore: Growth of CdTe–InSb multilayers on (100) InSb substrates using molecular beam epitaxy. Appl. Phys. Lett. 53, 1847 (1988).

    Article  CAS  Google Scholar 

  17. J. Lu, M.J. DiNezza, X-H. Zhao, S. Liu, Y-H. Zhang, A. Kovacs, R.E. Dunin-Borkowski, and D.J. Smith: Towards defect-free epitaxial CdTe and MgCdTe layers grown on InSb (001) substrates. J. Cryst. Growth 439, 99 (2016).

    Article  CAS  Google Scholar 

  18. L. Ouyang, J. Fan, S. Wang, X. Lu, Y-H. Zhang, X. Liu, J. Furdyna, and D.J. Smith: Microstructural characterization of thick ZnTe epilayers grown on GaSb, InAs, InP and GaAs (100) substrates. J. Cryst. Growth 330, 30 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Jacek Furdyna, Xinyu Liu, Ted Moustakas, Lin Zhou and Lu Ouyang whose collaboration and support made this research possible, and we gratefully acknowledge the use of facilities in the John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Smith.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, D.J., Lu, J., Aoki, T. et al. Observation of compound semiconductors and heterovalent interfaces using aberration-corrected scanning transmission electron microscopy. Journal of Materials Research 32, 921–927 (2017). https://doi.org/10.1557/jmr.2016.297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.297

Navigation