Skip to main content
Log in

Experimental phase diagram of SiC in CH3SiCl3–Ar–H2 system produced by fluidized bed chemical vapor deposition and its nuclear applications

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A systematic study of SiC layer preparation in CH3SiCl3–Ar–H2 system by fluidized bed chemical vapor deposition was given. The phase, morphology, grain size, and crystal structure of the products were investigated based on series characterizations methods. Free silicon was formed at lower temperatures while free carbon was formed at higher temperatures. By introducing argon in the deposition system, silicon formation was suppressed and cauliflower structure with subordinate small particles was observed. The formation mechanisms of different microstructures were discussed. The experimental phase diagram of CVD SiC composed of three regions of SiC + Si, SiC and SiC + C was established and boundaries of the three regions were given. The phase diagram obtained can be used to guide the new applications of SiC series materials. The low-temperature dense SiC, porous SiC with tunable densities, small grained SiC, and composite SiC materials were prepared successfully, also it was indicated that SiC jointing technology can be developed based on the phase diagram accordingly in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. J. Selvakumar and D. Sathiyamoorthy: Prospects of chemical vapor grown silicon carbide thin films using halogen-free single sources in nuclear reactor applications: A review. J. Mater. Res. 28 (1), 136 (2013).

    Article  CAS  Google Scholar 

  2. W.J. Weber and F. Gao: Irradiation-induced defect clustering and amorphization in silicon carbide. J. Mater. Res. 25 (12), 2349 (2010).

    Article  CAS  Google Scholar 

  3. C. Tang, Y. Tang, J. Zhu, Y. Zou, J. Li, and X. Ni: Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor. Nucl. Eng. Des. 218 (1–3), 91 (2002).

    Article  CAS  Google Scholar 

  4. H. Nabielek, W. Kuhnlein, W. Schenk, W. Heit, A. Christ, and H. Ragoss: Development of advanced HTR fuel-elements. Nucl. Eng. Des. 121 (2), 199 (1990).

    Article  CAS  Google Scholar 

  5. L.L. Snead, T. Nozawa, Y. Katoh, T-S. Byun, S. Kondo, and D.A. Petti: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371 (1–3), 329 (2007).

    Article  CAS  Google Scholar 

  6. C.W. Forsberg, K.A. Terrani, L.L. Snead, and Y. Katoh: Fluoride-salt-cooled high-temperature reactor (FHR) with silicon-carbide-matrix coated-particle fuel. Trans. Am. Nucl. Soc. 107, 907 (2012).

    Google Scholar 

  7. M.K. Meyer, R. Fielding, and J. Gan: Fuel development for gas-cooled fast reactors. J. Nucl. Mater. 371 (1–3), 281 (2007).

    Article  CAS  Google Scholar 

  8. S. Sahin and F. Sefidvash: The fixed bed nuclear reactor concept. Energy Convers. Manage. 49 (7), 1902 (2008).

    Article  CAS  Google Scholar 

  9. K. Yueh, D. Carpenter, and H. Feinroth: Clad in clay. Nucl. Eng. Int. 55 (666), 14 (2010).

    CAS  Google Scholar 

  10. W-J. Kim, D. Kim, and J.Y. Park: Fabrication and material issues for the application of SiC composites to LWR fuel cladding. Nucl. Eng. Technol. 45 (4), 565 (2013).

    Article  CAS  Google Scholar 

  11. Y. Katoh, L.L. Snead, C.H. Henager, Jr., A. Hasegawa, A. Kohyama, B. Riccardi, and H. Hegeman: Current status and critical issues for development of SiC composites for fusion applications. J. Nucl. Mater. 367, 659 (2007).

    Article  Google Scholar 

  12. L.L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, and M. Sawan: Silicon carbide composites as fusion power reactor structural materials. J. Nucl. Mater. 417 (1–3), 330 (2011).

    Article  CAS  Google Scholar 

  13. K. Minato and K. Fukuda: Chemical vapor-deposition of silicon-carbide for coated fuel-particles. J. Nucl. Mater. 149 (2), 233 (1987).

    Article  CAS  Google Scholar 

  14. M. Liu, R. Liu, B. Liu, and Y. Shao: Preparation of the coated nuclear fuel particle using the fluidized bed-chemical vapor deposition (FB-CVD) method. Procedia Eng. 102, 1890 (2015).

    Article  CAS  Google Scholar 

  15. E. Lopez-Honorato, P.J. Meadows, J. Tan, and P. Xiao: Control of stoichiometry, microstructure, and mechanical properties in SiC coatings produced by fluidized bed chemical vapor deposition. J. Mater. Res. 23 (6), 1785 (2008).

    Article  CAS  Google Scholar 

  16. G.D. Papasouliotis and S.V. Sotirchos: On the homogeneous chemistry of the thermal-decomposition of methyltrichlorosilane—Thermodynamic analysis and kinetic modeling. J. Electrochem. Soc. 141 (6), 1599 (1994).

    Article  CAS  Google Scholar 

  17. K. Minato and K. Fukuda: Structure of chemically vapor-deposited silicon-carbide for coated fuel-particles. J. Mater. Sci. 23 (2), 699 (1988).

    Article  CAS  Google Scholar 

  18. A.I. Kingon, L.J. Lutz, P. Liaw, and R.F. Davis: Thermodynamic calculations for the chemical vapor-deposition of silicon-carbide. J. Am. Ceram. Soc. 66 (8), 558 (1983).

    Article  CAS  Google Scholar 

  19. S. Motojima and M. Hasegawa: Chemical vapor-deposition of SiC layers from a gas-mixture of CH3SiCl3 + H2 + Ar. Thin Solid Films 186 (2), L39 (1990).

    Article  Google Scholar 

  20. R. Liu, B. Liu, K. Zhang, M. Liu, Y. Shao, and C. Tang: High temperature oxidation behavior of SiC coating in TRISO coated particles. J. Nucl. Mater. 453 (1), 107 (2014).

    Article  CAS  Google Scholar 

  21. S. Nakashima and H. Harima: Raman investigation of SiC polytypes. Phys. Status Solidi A 162 (1), 39 (1997).

    Article  CAS  Google Scholar 

  22. Y. Ma, S. Wang, and Z-h. Chen: Raman spectroscopy studies of the high-temperature evolution of the free carbon phase in polycarbosilane derived SiC ceramics. Ceram. Int. 36 (8), 2455 (2010).

    Article  CAS  Google Scholar 

  23. M.D. Allendorf and R.J. Kee: A model of silicon-carbide chemical vapor-deposition. J. Electrochem. Soc. 138 (3), 841 (1991).

    Article  CAS  Google Scholar 

  24. E. Lopez-Honorato, J. Tan, P.J. Meadows, G. Marsh, and P. Xiao: TRISO coated fuel particles with enhanced SiC properties. J. Nucl. Mater. 392 (2), 219 (2009).

    Article  CAS  Google Scholar 

  25. S. Rohmfeld, M. Hundhausen, and L. Ley: Raman scattering in polycrystalline 3C–SiC: Influence of stacking faults. Phys. Rev. B 58 (15), 9858 (1998).

    Article  CAS  Google Scholar 

  26. O. Jung-Hwan, O. Byung-Jun, C. Doo-Jin, K. Geung-Ho, and S. Hue-Sup: The effect of input gas ratio on the growth behavior of chemical vapor deposited SiC films. J. Mater. Sci. 36 (7), 1695 (2001).

    Article  Google Scholar 

  27. Y. Yang, H. Wang, Z. Ji, Y. Han, and J. Li: A switch from classic crystallization to non-classic crystallization by controlling the diffusion of chemicals. CrystEngComm 16 (33), 7633 (2015).

    Article  Google Scholar 

  28. T.M. Besmann: SOLGASMIX-PV, a computer program to calculate equilibrium relationships in complex chemical systems. ORNL/TM-5775 1 (1977).

  29. R. Liu, M. Liu, J. Chang, Y. Shao, and B. Liu: An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition. J. Nucl. Mater. 467, 917 (2015).

    Article  CAS  Google Scholar 

  30. D.A. Petti, J. Buongiorno, J.T. Maki, R.R. Hobbins, and G.K. Miller: Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance. Nucl. Eng. Des. 222 (2–3), 281 (2003).

    Article  CAS  Google Scholar 

  31. H. Nabielek, P.E. Brown, and P. Offermann: Silver release from coated particle fuel. Nucl. Technol. 35 (2), 483 (1977).

    Article  CAS  Google Scholar 

  32. L. Jamison, K. Sridharan, S. Shannon, and I. Szlufarska: Temperature and irradiation species dependence of radiation response of nanocrystalline silicon carbide. J. Mater. Res. 29 (23), 2871 (2014).

    Article  CAS  Google Scholar 

  33. H.E. Khalifa, C.P. Deck, O. Gutierrez, G.M. Jacobsen, and C.A. Back: Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications. J. Nucl. Mater. 457, 227 (2015).

    Article  CAS  Google Scholar 

  34. M. Herrmann, W. Lippmann, and A. Hurtado: High-temperature stability of laser-joined silicon carbide components. J. Nucl. Mater. 443 (1–3), 458 (2013).

    Article  CAS  Google Scholar 

  35. Y. Katoh, L.L. Snead, T. Cheng, C. Shih, W.D. Lewis, T. Koyanagi, T. Hinoki, C.H. Henager, Jr., and M. Ferraris: Radiation-tolerant joining technologies for silicon carbide ceramics and composites. J. Nucl. Mater. 448 (1–3), 497 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (Grant Nos: 51302148, 21306097), and Research Fund for Independent Research Projects of Tsinghua University (Grant Nos: 20131089217, 20121088038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Liu, M. & Chang, J. Experimental phase diagram of SiC in CH3SiCl3–Ar–H2 system produced by fluidized bed chemical vapor deposition and its nuclear applications. Journal of Materials Research 31, 2695–2705 (2016). https://doi.org/10.1557/jmr.2016.274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.274

Navigation