Skip to main content
Log in

Preparation of DNA-immobilized magnetic particles and their utilization as an accumulative material of metal ions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

DNA-immobilized Fe3O4 particles (DNA–Fe-particles) were prepared by mixing DNA, magnetic Fe3O4 particles, and the silane coupling reagent, bis[3-(trimethoxysilyl)propyl]amine. The DNA-inorganic hybrid material was uniformly immobilized onto magnetic Fe3O4 particles with the diameters of approximately 450 nm. These DNA-Fe-particles were stable in water. Additionally, we could simply collect the DNA-Fe-particles by a magnet from an aqueous solution. Therefore, we demonstrated the accumulation of various metal ions, such as heavy and rare-earth metal ions, by the DNA-Fe-particles. As a result, although these DNA-Fe-particles could selectively accumulate heavy and rare-earth metal ions, these materials could not accumulate the light metal ions, such as Mg(II) and Ca(II) ions. Furthermore, the metal ion-accumulated DNA-Fe-particles could be recycled by washing them with an aqueous ethylenediaminetetraacetic acid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. W. Saenger: Principles of Nucleic Acid Structure (Springer-Verlag: Berlin, 1987).

    Google Scholar 

  2. M.J. Waring: DNA modification and cancer. Annu. Rev. Biochem. 50, 159 (1981).

    Article  CAS  Google Scholar 

  3. X.D. Liu, M. Yamada, M. Matsunaga, and N. Nishi: Functional materials derived from DNA. Adv. Polym. Sci. 209, 149 (2007).

    CAS  Google Scholar 

  4. X.D. Liu, H.Y. Diao, and N. Nishi: Applied chemistry of natural DNA. Chem. Soc. Rev. 37, 2745 (2008).

    Article  CAS  Google Scholar 

  5. M. Yamada, K. Kato, K. Shindo, M. Nomizu, M. Haruki, N. Sakairi, K. Ohkawa, H. Yamamoto, and N. Nishi: UV-irradiation-induced DNA immobilization and functional utilization of DNA on nonwoven cellulose fabric. Biomaterials 22, 3121 (2001).

    Article  CAS  Google Scholar 

  6. M. Yamada, K. Kato, M. Nomizu, K. Ohkawa, H. Yamamoto, and N. Nishi: UV-irradiated DNA matrixes selectively bind endocrine disruptors with a planar structure. Environ. Sci. Technol. 36, 949 (2002).

    Article  CAS  Google Scholar 

  7. Y. Okahata, T. Kobayashi, K. Tanaka, and M. Shimomura: Anisotropic electric conductivity in an aligned DNA cast film. J. Am. Chem. Soc. 120, 6165 (1998).

    Article  CAS  Google Scholar 

  8. H. Nakayama, H. Ohno, and Y. Okahata: Intramolecular electron conduction along DNA strands and their temperature dependency in a DNA-aligned cast film. Chem. Commun. 22, 2300 (2001).

    Article  CAS  Google Scholar 

  9. L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama: Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: Large-scale preparation and optical and thermal properties. Chem. Mater. 13, 1273 (2001).

    Article  CAS  Google Scholar 

  10. Y.C. Hung, T.Y. Lin, W.T. Hsu, Y.W. Chiu, Y.S. Wang, and L. Fruk: Functional DNA biopolymers and nanocomposite for optoelectronic applications. Opt. Mater. 34, 1208 (2012).

    Article  CAS  Google Scholar 

  11. W. Long, W. Zou, X. Li, and J. Chen: DNA optical nanofibers: Preparation and characterization. Opt. Express 20, 18188 (2012).

    Article  CAS  Google Scholar 

  12. M. Yamada and A. Goto: Proton conduction of DNA-imidazole composite material under anhydrous condition. Polym. J. 44, 415 (2012).

    Article  CAS  Google Scholar 

  13. D.K. Lee, J. Won, and S.S. Hwang: Effect of the matrix on proton conductivity in electrolyte membranes containing deoxyribonucleic acids. J. Membr. Sci. 328, 211 (2009).

    Article  CAS  Google Scholar 

  14. M. Yamada, S. Hara, T. Yamada, F. Katagiri, K. Hozumi, and M. Nomizu: Double-stranded DNA stereoselectively promotes aggregation of amyloid-like fibrils and generates peptide/DNA matrices. Biopolymers 102, 465 (2014).

    Article  CAS  Google Scholar 

  15. D.A. Goukassian, E. Helms, H. Steeg, C. Oostrom, J. Bhawan, and B.A. Gilchrest: Topical DNA oligonucleotide therapy reduces UV-induced mutations and photocarcinogenesis in hairless mice. Proc. Natl. Acad. Sci. U. S. A. 101, 3933 (2004).

    Article  CAS  Google Scholar 

  16. N.C. Seeman: Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65 (2010).

    Article  CAS  Google Scholar 

  17. Y.H. Roh, R.C.H. Ruiz, S. Peng, J.B. Lee, and D. Luo: Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730 (2011).

    Article  CAS  Google Scholar 

  18. E. Stulz: DNA architectonics: Towards the next generation of bio-inspired materials. Chem. — Eur. J. 18, 4456 (2012).

    Article  CAS  Google Scholar 

  19. Y. Maeda, A. Zinchenko, L.I. Lopatina, V.G. Sergeyev, and S. Murata: Extraction of noble and rare-earth metals from aqueous solutions by DNA cross-linked hydrogels. ChemPlusChem 78, 619 (2013).

    Article  CAS  Google Scholar 

  20. M. Yamada and H. Aono: DNA-inorganic hybrid material as selective absorbent for harmful compounds. Polymer 49, 4658 (2008).

    Article  CAS  Google Scholar 

  21. M. Yamada and A. Hamai: Selective accumulation of harmful compounds by the DNA-inorganic hybrid-immobilized glass bead. Anal. Chim. Acta 674, 249 (2009).

    Article  CAS  Google Scholar 

  22. M. Yamada and K. Abe: Selective accumulation of rare earth metal and heavy metal ions by DNA-inorganic hybrid material. Polym. J. 46, 366 (2014).

    Article  CAS  Google Scholar 

  23. E.D. Smolensky, K.L. Peterson, E.A. Weitz, C. Lewandowski, and V.C. Pierre: Magnetoluminescent light-switches: Dual modality in DNA detection. J. Am. Chem. Soc. 135, 8966 (2013).

    Article  CAS  Google Scholar 

  24. X. Wang, J. Zhuang, Q. Peng, and Y. Li: Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg. Chem. 45, 6661 (2006).

    Article  CAS  Google Scholar 

  25. T. Arai, T. Sato, H. Kanoh, K. Kaneko, K. Oguma, and A. Yanagisawa: Organic–inorganic hybrid polymer-encapsulated magnetic nanobead catalysts. Chem. Eur. J. 14, 882 (2008).

    Article  CAS  Google Scholar 

  26. V.Q. Nguyen, M. Ishihara, J. Kinoda, H. Hattori, S. Nakamura, T. Ono, Y. Miyahira, and T. Matsui: Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites. J. Nanobiotechnol. 12, 49 (2014).

    Article  CAS  Google Scholar 

  27. H. Li, S. Bi, L. Liu, W. Dong, and X. Wang: Separation and accumulation of Cu(II), Zn(II) and Cr(VI) from aqueous solution by magnetic chitosan modified with diethylenetriamine. Desalination 278, 397 (2011).

    Article  CAS  Google Scholar 

  28. S. Gai, C. Li, P. Yang, and J. Lin: Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114, 2343 (2014).

    Article  CAS  Google Scholar 

  29. Z. Yu, X. Zhang, and Y. Huang: Magnetic chitosan–iron(III) hydrogel as a fast and reusable adsorbent for chromium(VI) removal. Ind. Eng. Chem. Res. 52, 11956 (2013).

    Article  CAS  Google Scholar 

  30. S.V. Vasilyeva, M.A. Vorotyntsev, I. Bezverkhyy, E. Lesniewska, O. Heintz, and R. Chassagnon: Synthesis and characterization of palladium nanoparticle/polypyrrole composites. J. Phys. Chem. C 112, 19878 (2008).

    Article  CAS  Google Scholar 

  31. K. Qu, L. Wu, J. Ren, and X. Qu: Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction. ACS Appl. Mater. Interfaces 4, 5001 (2012).

    Article  CAS  Google Scholar 

  32. M.A. Willard, L.K. Kurihara, E.E. Carpenter, S. Calvin, and V.G. Harris: Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 49, 125 (2004).

    Article  CAS  Google Scholar 

  33. F.A. Cotton, G. Wilkinson, and P.L. Gauss: Basic Inorganic Chemistry (John Wiley & Sons: New York, 1991).

    Google Scholar 

  34. M. Otomo: Xylenol orange and its analogs. Bunseki Kagaku 21, 436 (1972).

    Article  CAS  Google Scholar 

  35. H.A. Tajmir-Riahi, M. Naoui, and R. Ahimad: The effects of Cu2+ and Pb2+ on the solution structure of calf thymus DNA: DNA condensation and denaturation studied by Fourier transform ir difference spectroscopy. Biopolymers 33, 1819 (1993).

    Article  CAS  Google Scholar 

  36. M. Banyay and A. Sarkaräslund: A library of IR bands of nucleic acids in solution. Biophys. Chem. 104, 477 (2003).

    Article  CAS  Google Scholar 

  37. E.P. Plueddemann: Silane Coupling Agents, 2nd ed. (Plenum Press: New York, 1991).

    Book  Google Scholar 

  38. J. Vince, B. Orel, A. Vilčnik, M. Fir, A.S. Vuk, V. Jovanovski, and B. Simončič: Structural and water-repellent properties of a urea/poly(dimethylsiloxane) sol–gel hybrid and its bonding to cotton fabric. Langmuir 22, 6489 (2006).

    Article  CAS  Google Scholar 

  39. A. Ulman: An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic Press: San Diego, 1991).

    Google Scholar 

  40. S.J. Lippard and J.M. Berg: Principles of Bioinorganic Chemistry (University of Science Books, Mill Valley, 1994).

    Google Scholar 

  41. N. Hadjiliadis and E. Sletten: Metal Complex-DNA Interactions (John Wiley & Sons, Hong Kong, 2009).

    Book  Google Scholar 

  42. T. Biver: Stabilisation of non-canonical structures of nucleic acids by metal ions and small molecules. Coord. Chem. Rev. 257, 2765 (2013).

    Article  CAS  Google Scholar 

  43. P. Scharf and J. Müller: Nucleic acids with metal-mediated base pairs and their applications. ChemPlusChem 78, 20 (2013).

    Article  CAS  Google Scholar 

  44. I.M.C. Lo and X.Y. Yang: EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water, Air, Soil Pollut. 109, 219 (1999).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant No. 25410195 and the matching fund subsidy for private universities from MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Yamada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, M., Fujisawa, A., Morishige, K. et al. Preparation of DNA-immobilized magnetic particles and their utilization as an accumulative material of metal ions. Journal of Materials Research 31, 360–369 (2016). https://doi.org/10.1557/jmr.2016.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.14

Navigation