Skip to main content
Log in

Investigation of poly(l-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA)/graphene oxide (GO) nanocomposites were prepared by solution mixing. Differential scanning calorimetry results indicated that GO was an effective nucleating agent. The size of spherulites decreased, the density of spherulites increased with increasing GO and the crystallinity of PLA increased from 4.34 to 49.01%. For isothermal crystallization, the crystallization rates of PLA/GO nanocomposites were significantly higher than that of neat PLA, in which t0.5 reduced from 9.0 to 2.8. Spindle-like nanopores (about 100–200 nm) that arranged like spherulites were prepared by low temperature foaming. It was found that the crystallization rate increase and spherulite morphology change were insignificant when the content of GO exceeded 0.5 wt%, because the excessive GO increased the number of nucleation sites while restricting the PLA crystal growth. Thus, the arrangement of nanopores did not mimick the spherulites because of imperfect crystal morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. K.M. Nampoothiri, N.R. Nair, and R.P. John: An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101, 8493 (2010).

    Article  CAS  Google Scholar 

  2. E. Valarezo, L. Tammaro, O. Malagon, S. Gonzalez, C. Armijos, and V. Vittoria: Fabrication and characterization of poly(lactic acid)/poly(epsilon-caprolactone) blend electrospun fibers loaded with amoxicillin for tunable delivering. J. Nanosci. Nanotechnol. 15, 4706 (2015).

    Article  CAS  Google Scholar 

  3. M. Drieskens, R. Peeters, J. Mullens, D. Franco, P.J. Lemstra, and D.G. Hristova-Bogaerds: Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties. J. Polym. Sci., Part B: Polym. Phys. 47, 2247 (2009).

    Article  CAS  Google Scholar 

  4. L. Wang, Y.N. Wang, Z.G. Huang, and Y.X. Weng: Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites. Mater. Des. 66, 7 (2015).

    Article  CAS  Google Scholar 

  5. P.P. Pan, Z.C. Liang, A. Cao, and Y. Inoue: Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl. Mater. Interfaces 1, 402 (2009).

    Article  CAS  Google Scholar 

  6. J. Yu and Z.B. Qiu: Preparation and properties of biodegradable poly(l-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl. Mater. Interfaces 3, 890 (2011).

    Article  CAS  Google Scholar 

  7. Y.Y. Zhao, Z.B. Qiu, and W.T. Yang: Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). J. Phys. Chem. B 112, 16461 (2008).

    Article  CAS  Google Scholar 

  8. H. Pan and Z.B. Qiu: Biodegradable poly(l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: Enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 43, 1499 (2010).

    Article  CAS  Google Scholar 

  9. G.Z. Papageorgiou, D.S. Achilias, S. Nanaki, T. Beslikas, and D. Bikiaris: PLA nanocomposites: Effect of filler type on non-isothermal crystallization. Thermochim. Acta 511, 129 (2010).

    Article  CAS  Google Scholar 

  10. B.P. Grady, F. Pompeo, R.L. Shambaugh, and D.E. Resasco: Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J. Phys. Chem. B 106, 5852 (2002).

    Article  CAS  Google Scholar 

  11. S.S. Ray and M. Okamoto: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539 (2003).

    Article  CAS  Google Scholar 

  12. S.C. Shiu and J.L. Tsai: Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Composites, Part B 56, 691 (2014).

    Article  CAS  Google Scholar 

  13. D. Wu, Y. Cheng, S. Feng, Z. Yao, and M. Zhang: Crystallization behavior of polylactide/graphene composites. Ind. Eng. Chem. Res. 52, 6731 (2013).

    Article  CAS  Google Scholar 

  14. S. Stankovich, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342 (2006).

    Article  CAS  Google Scholar 

  15. H. Kim, A.A. Abdala, and C.W. Macosko: Graphene/polymer nanocomposites. Macromolecules 43, 6515 (2010).

    Article  CAS  Google Scholar 

  16. T. Kuilla, S. Bhadra, D.H. Yao, N.H. Kim, S. Bose, and J.H. Lee: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350 (2010).

    Article  CAS  Google Scholar 

  17. J.R. Potts, D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff: Graphene-based polymer nanocomposites. Polymer 52, 5 (2011).

    Article  CAS  Google Scholar 

  18. H. Wang and Z. Qiu: Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: Influences of graphene oxide loading and crystallization temperature. Thermochim. Acta 527, 40 (2012).

    Article  CAS  Google Scholar 

  19. H.S. Wang and Z.B. Qiu: Crystallization behaviors of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim. Acta 526, 229 (2011).

    Article  CAS  Google Scholar 

  20. L. Li, H. Yokoyama, T. Nemoto, and K. Sugiyama: Facile fabrication of nanocellular block copolymer thin films using supercritical carbon dioxide. Adv. Mater. 16, 1226 (2004).

    Article  CAS  Google Scholar 

  21. S. Siripurapu, J.M. DeSimone, S.A. Khan, and R.J. Spontak: Low-temperature, surface-mediated foaming of polymer films. Adv. Mater. 16, 989 (2004).

    Article  CAS  Google Scholar 

  22. H. Yokoyama, L. Li, T. Nemoto, and K. Sugiyama: Tunable nanocellular polymeric monoliths using fluorinated block copolymer templates and supercritical carbon dioxide. Adv. Mater. 16, 1542 (2004).

    Article  CAS  Google Scholar 

  23. C.L. Zhang, B. Zhu, D.C. Li, and L.J. Lee: Extruded polystyrene foams with bimodal cell morphology. Polymer 53, 2435 (2012).

    Article  CAS  Google Scholar 

  24. A. Salerno, M. Oliviero, E. Di Maio, S. Iannace, and P.A. Netti: Design and preparation of mu-bimodal porous scaffold for tissue engineering. J. Appl. Polym. Sci. 106, 3335 (2007).

    Article  CAS  Google Scholar 

  25. A. Salerno, S. Zeppetelli, E. Di Maio, S. Iannace, and P.A. Netti: Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO2 foaming. Macromol. Rapid Commun. 32, 1150 (2011).

    Article  CAS  Google Scholar 

  26. J.E. Martini, F.A. Waldman, and N.P. Suh: The production and ananlysis of microcelluar thermoplastic foams. Annu. Tech. Conf. Soc. Plast. Eng. 28, 674 (1982).

    Google Scholar 

  27. H. Sai, K.W. Tan, K. Hur, E. Asenath-Smith, R. Hovden, Y. Jiang, M. Riccio, D.A. Muller, V. Elser, L.A. Estroff, S.M. Gruner, and U. Wiesner: Hierarchical porous polymer scaffolds from block copolymers. Science 341, 530 (2013).

    Article  CAS  Google Scholar 

  28. J.A.R. Ruiz, M. Pedros, J.M. Tallon, and M. Dumon: Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers—one step foaming process. J. Supercrit. Fluids 58, 168 (2011).

    Article  CAS  Google Scholar 

  29. T. Liu, Y.J. Lei, Z.L. Chen, X.Z. Wang, and S.K. Luo: Effects of processing conditions on foaming behaviors of polyetherimide (PEI) and PEI/polypropylene blends in microcellular injection molding process. J. Appl. Polym. Sci. 132, 41443–41452 (2015).

    Google Scholar 

  30. T.R. Kuang, H.Y. Mi, D.J. Fu, X. Jing, B.Y. Chen, W.J. Mou, and X.F. Peng: Fabrication of poly(lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Ind. Eng. Chem. Res. 54, 758 (2015).

    Article  CAS  Google Scholar 

  31. P. Yu, H-Y. Mi, A. Huang, L-H. Geng, B-Y. Chen, T-R. Kuang, W-J. Mou, and X-F. Peng: Effect of poly(butylenes succinate) on poly(lactic acid) foaming behavior: Formation of open cell structure. Ind. Eng. Chem. Res. 54, 6199 (2015).

    Article  CAS  Google Scholar 

  32. H.B. Zhao, Z.X. Cui, X.F. Sun, L.S. Turng, and X.F. Peng: Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind. Eng. Chem. Res. 52, 2569 (2013).

    Article  CAS  Google Scholar 

  33. J.N. Huang, X. Jing, L.H. Geng, B.Y. Chen, H.Y. Mi, and X.F. Peng: A novel multiple soaking temperature (MST) method to prepare polylactic acid foams with bi-modal open-pore structure and their potential in tissue engineering applications. J. Supercrit. Fluids 103, 28 (2015).

    Article  CAS  Google Scholar 

  34. K. Evanoff, A. Magasinski, J.B. Yang, and G. Yushin: Nanosilicon-coated graphene granules as anodes for Li-ion batteries. Adv. Energy Mater. 1, 495 (2011).

    Article  CAS  Google Scholar 

  35. Y. Sun and C.B. He: Synthesis and stereocomplex crystallization of poly(lactide)-graphene oxide nanocomposites. ACS Macro Lett. 1, 709 (2012).

    Article  CAS  Google Scholar 

  36. J.Z. Xu, T. Chen, C.L. Yang, Z.M. Li, Y.M. Mao, B.Q. Zeng, and B.S. Hsiao: Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: A comparative study. Macromolecules 43, 5000 (2010).

    Article  CAS  Google Scholar 

  37. Y.H. Li and X.S. Sun: Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of l-lactic acid and surface-hydroxylated MgO. Biomacromolecules 11, 1847 (2010).

    Article  CAS  Google Scholar 

  38. J.Y. Jang, M.S. Kim, H.M. Jeong, and C.M. Shin: Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos. Sci. Technol. 69, 186 (2009).

    Article  CAS  Google Scholar 

  39. L. Hua, W.H. Kai, Z.C. Liang, and Y. Inoue: Polyester/organo-graphite oxide composite: Effect of organically surface modified layered graphite on structure and physical properties of poly(epsilon-caprolactone). J. Polym. Sci., Part B: Polym. Phys. 48, 294 (2010).

    Article  CAS  Google Scholar 

  40. J.M. Zhang, Y.X. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki: Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38, 8012 (2005).

    Article  CAS  Google Scholar 

  41. P.J. Pan, B. Zhu, W.H. Kai, T. Dong, and Y. Inoue: Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 41, 4296 (2008).

    Article  CAS  Google Scholar 

  42. V. Uvarov and I. Popov: Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111 (2013).

    Article  CAS  Google Scholar 

  43. T. Dong, W.H. Kai, P.J. Pan, A. Cao, and Y. Inoue: Effects of host-guest stoichiometry of alpha-cyclodextrin-aliphatic polyester inclusion complexes and molecular weight of guest polymer on the crystallization behavior of aliphatic polyesters. Macromolecules 40, 7244 (2007).

    Article  CAS  Google Scholar 

  44. M. Avrami: Kinetics of phase change. I. General theory. J. Chem. Phys. 7, 1103 (1939).

    Article  CAS  Google Scholar 

  45. X.J. Guo, H.Z. Liu, J.W. Zhang, and J.J. Huang: Effects of polyoxymethylene as a polymeric nucleating agent on the isothermal crystallization and visible transmittance of poly(lactic acid). Ind. Eng. Chem. Res. 53, 16754 (2014).

    Article  CAS  Google Scholar 

  46. M. Li and Y.G. Jeong: Influences of exfoliated graphite on structures, thermal stability, mechanical modulus, and electrical resistivity of poly(butylene terephthalate). J. Appl. Polym. Sci. 125, E532 (2012).

    Article  CAS  Google Scholar 

  47. J.Z. Xu, C. Chen, Y. Wang, H. Tang, Z.M. Li, and B.S. Hsiao: Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 44, 2808 (2011).

    Article  CAS  Google Scholar 

  48. J.Z. Xu, Y.Y. Liang, G.J. Zhong, H.L. Li, C. Chen, L.B. Li, and Z.M. Li: Graphene oxide nanosheet induced intrachain conformational ordering in a semicrystalline polymer. J. Phys. Chem. Lett. 3, 530 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank National Nature Science Foundation of China for the financial support (Contract Grant Nos. 21174044, 51573063, and 11272093); Guangdong Nature Science Foundation (Contract Grant No. S2013020013855); National Basic Research Development Program 973 in China (Contract Grant No. 2012CB025902); Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2012); Fundamental Research Funds for the Central Universities (D2155470).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin-Yi Chen or Hao-Yang Mi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, LH., Peng, XF., Jing, X. et al. Investigation of poly(l-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming. Journal of Materials Research 31, 348–359 (2016). https://doi.org/10.1557/jmr.2016.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.13

Navigation