Skip to main content
Log in

Effect of polyethylene glycol on the crystallization, rheology and foamability of poly(lactic acid) containing in situ generated polyamide 6 nanofibrils

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the rheological properties, crystallization and foaming behavior of poly(lactic acid) with polyamide 6 nanofibrils were examined with polyethylene glycol as a compatibilizer. Polyamide 6 particles were deformed into nanofibrils during drawing. For the 10% polyamide 6 case, polyethylene glycol addition reduced the polyamide 6 fibril diameter from 365.53 to 254.63 nm, owing to the smaller polyamide 6 particle size and enhanced interface adhesion. Rheological experiments revealed that the viscosity and storage modulus of the composites were increased, which was associated with the three-dimensional entangled network of polyamide 6 nanofibrils. The presence of higher aspect ratio polyamide 6 nanofibrils substantially enhanced the melt strength of the composites. The isothermal crystallization kinetics results suggested that the polyamide 6 nanofibrils and polyethylene glycol had a synergistic effect on accelerating poly(lactic acid) crystallization. With the polyethylene glycol, the crystallization half-time reduced from 103.6 to 62.2 s. Batch foaming results indicated that owing to higher cell nucleation efficiency, the existence of polyamide 6 nanofibrils led to a higher cell density and lower expansion ratio. Furthermore, the poly(lactic acid)/polyamide 6 foams exhibited a higher cell density and expansion ratio than that of the foams without polyethylene glycol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batool M, Abid A, Khurshid S, Bashir T, Ismail M A, Razaq M A, jamil M, jamil M. Quality control of nano-food packing material for grapes (Vitis vinifera) based on ZnO and polylactic acid (PLA) biofilm. Arabian Journal for Science and Engineering, 2022, 47(1): 319–331

    Article  CAS  Google Scholar 

  2. Karakurt I, Ozaltin K, Pištěková H, Vesela D, Michael-Lindhard J, Humpolílcek P, Mozetič M, Lehocky M. Effect of saccharides coating on antibacterial potential and drug loading and releasing capability of plasma treated polylactic acid films. International Journal of Molecular Sciences, 2022, 23(15): 8821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ledda M, Merco M, Sciortino A, Scatena E, Convertino A, Lisi A, Del Gaudio C. Biological response to bioinspired microporous 3D-printed scaffolds for bone tissue engineering. International Journal of Molecular Sciences, 2022, 23(10): 5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jalali A, Romero-Diez S, Nofar M, Park C B. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: exploring the role of nanofibrillated stereocomplex polylactide crystals. International Journal of Biological Macromolecules, 2021, 193: 2210–2220

    Article  CAS  PubMed  Google Scholar 

  5. Atalay S E, Bezci B, Özdemir B, Göksu Y A, Ghanbari A, Jalali A, Nofar M. Thermal and environmentally induced degradation behaviors of amorphous and semicrystalline plas through rheological analysis. Journal of Polymers and the Environment, 2021, 29(10): 3412–3426

    Article  CAS  Google Scholar 

  6. Zhou H, Zhao M, Qu Z, Mi J, Wang X, Deng Y. Thermal and rheological properties of poly(lactic acid)/low-density polyethylene blends and their supercritical CO2 foaming behavior. Journal of Polymers and the Environment, 2018, 26(9): 3564–3573

    Article  CAS  Google Scholar 

  7. Nofar M, Tabatabaei A, Park C B. Effects of nano/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer, 2013, 54(9): 2382–2391

    Article  CAS  Google Scholar 

  8. Kuang T R, Mi H Y, Fu D J, Jing X, Chen B Y, Mou W J, Peng X F. Fabrication of poly(lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 2015, 54(2): 758–768

    Article  CAS  Google Scholar 

  9. Corre Y M, Maazouz A, Duchet J, Reignier J. Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure. Journal of Supercritical Fluids, 2011, 58(1): 177–188

    Article  CAS  Google Scholar 

  10. Jalali A, Huneault M A, Nofar M, Lee P C, Park C B. Effect of branching on flow-induced crystallization of poly(lactic acid). European Polymer Journal, 2019, 119: 410–420

    Article  CAS  Google Scholar 

  11. Di Y W, Iannace S, Maio E D, Nicolais L. Poly(lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing. Journal of Polymer Science. Part B, Polymer Physics, 2005, 43(6): 689–698

    Article  CAS  Google Scholar 

  12. Wang X D, Zhou H F, Liu B G, Du Z J, Li H Q. Chain extension and foaming behavior of poly(lactic acid) by functionalized multiwalled carbon nanotubes and chain extender. Advances in Polymer Technology, 2014, 33(S1): 21444

    Article  Google Scholar 

  13. Nofar M, Salehiyan R, Ciftci U, Jalali A, Durmus A. Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. Composites. Part B, Engineering, 2020, 182: 107661

    Article  CAS  Google Scholar 

  14. Lee R E, Azdast T, Wang G, Wang X, Lee P C. Highly expanded fine-cell foam of polylactide/polyhydroxyalkanoate/nano-fibrillated polytetrafluoroethylene composites blown with mold-opening injection molding. International Journal of Biological Macromolecules, 2020, 155: 286–292

    Article  CAS  PubMed  Google Scholar 

  15. Xu D F, Yu K J, Qian K, Park C B. Foaming behavior of microcellular poly(lactic acid)/TPU composites in supercritical CO2. Journal of Thermoplastic Composite Materials, 2018, 31(1): 61–78

    Article  CAS  Google Scholar 

  16. Nofar M, Yenigul B S, Ozdemir B, Kovanci C Y, Jalali A. Mechanical and viscoelastic properties of polyethylene-based microfibrillated composites from 100% recycled resources. Journal of Applied Polymer Science, 2021, 138(32): e50793

    Article  Google Scholar 

  17. Yang J N, Nie S B, Qiao Y H, Liu Y, Cheng G J. Crystallization and rheological properties of the eco-friendly composites based on poly(lactic acid) and precipitated barium sulfate. Journal of Polymers and the Environment, 2019, 27(12): 2739–2755

    Article  CAS  Google Scholar 

  18. Qiao Y H, Jalali A, Yang J, Chen Y, Wang S, Jiang Y, Hou J, Jiang J, Li Q, Park C B. Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites. Journal of Materials Science, 2021, 56(4): 3562–3575

    Article  CAS  Google Scholar 

  19. Jalali A, Kim J H, Zolali A M, Soltani I, Nofar M, Behzadfar E, Park C B. Peculiar crystallization and viscoelastic properties of polylactide/polytetrafluoroethylene composites induced by in-situ formed 3D nanofiber network. Composites. Part B, Engineering, 2020, 200: 108361

    Article  CAS  Google Scholar 

  20. Huang A, Peng X F, Turng L S. In-situ fibrillated polytetrafluoroethylene (PTFE) in thermoplastic polyurethane (TPU) via melt blending: effect on rheological behavior, mechanical properties, and microcellular foamability. Polymer, 2018, 134: 263–274

    Article  CAS  Google Scholar 

  21. Zhao J, Zhao Q, Wang C, Guo B, Park C B, Wang G. High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Materials & Design, 2017, 131: 1–11

    Article  CAS  Google Scholar 

  22. Chai J, Wang G, Zhang A, Li S, Zhao J, Zhao G, Park C B. Ultra-ductile and strong in-situ fibrillated PLA/PTFE nanocomposites with outstanding heat resistance derived by CO2 treatment. Composites. Part A, Applied Science and Manufacturing, 2022, 155: 106849

    Article  CAS  Google Scholar 

  23. Huang A, Kharbas H, Ellingham T, Mi H, Turng L S, Peng X. Mechanical properties, crystallization characteristics, and foaming behavior of polytetrafluoroethylene-reinforced poly(lactic acid) composites. Polymer Engineering and Science, 2017, 57(5): 570–580

    Article  CAS  Google Scholar 

  24. Yokohara T, Nobukawa S, Yamaguchi M. Rheological properties of polymer composites with flexible fine fibers. Journal of Rheology, 2011, 55(6): 1205–1218

    Article  CAS  Google Scholar 

  25. Shahnooshi M, Javadi A, Nazockdast H, Altstadt V. Development of in situ nanofibrillar poly(lactic acid)/poly(butylene terephthalate) composites: non-isothermal crystallization and crystal morphology. European Polymer Journal, 2020, 125: UNSP 109489

    Article  Google Scholar 

  26. Kakroodi A R, Kazemi Y, Nofar M, Park C B. Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chemical Engineering Journal, 2017, 308: 772–782

    Article  CAS  Google Scholar 

  27. Mao N D, Jeong H, Ngan Nguyen T K, Loan Nguyen T M, Vi Do T V, Ha Thuc C N, Perré P, Ko S C, Kim H G, Tran D T. Polyethylene glycol functionalized graphene oxide and its influences on properties of poly(lactic acid) biohybrid materials. Composites. Part B, Engineering, 2019, 161: 651–658

    Article  Google Scholar 

  28. Yi X, Xu L, Wang Y L, Zhong G J, Ji X, Li Z M. Morphology and properties of isotactic polypropylene/poly(ethylene terephthalate) in situ microfibrillar reinforced blends: influence of viscosity ratio. European Polymer Journal, 2010, 46(4): 719–730

    Article  CAS  Google Scholar 

  29. Kuzmanović M, Delva L, Mi D, Martins C I, Cardon L, Ragaert K. Development of crystalline morphology and its relationship with mechanical properties of PP/PET microfibrillar composites containing POE and POE-g-MA. Polymers, 2018, 10(3): 291

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jalali A, Huneault M A, Elkoun S. Effect of molecular weight on the nucleation efficiency of poly(lactic acid) crystalline phases. Journal of Polymer Research, 2017, 24(11): 182

    Article  Google Scholar 

  31. Zhang J M, Wang S W, Qiao Y H, Li Q. Effect of morphology designing on the structure and properties of PLA/PEG/ABS blends. Colloid & Polymer Science, 2016, 294(11): 1779–1787

    Article  CAS  Google Scholar 

  32. La M F P, Ceraulo M, Giacchi G, Mistretta M C, Botta L. Effect of a compatibilizer on the morphology and properties of polypropylene/polyethylentherephthalate spun fibers. Polymers, 2017, 9(2): 47

    Google Scholar 

  33. Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly(L-lactide). Polymer, 2005, 46(23): 10290–10300

    Article  CAS  Google Scholar 

  34. Ferrarezi M M F, de Oliveira Taipina M, Escobar da Silva L C E, Gonçalves M D. Poly(ethylene glycol) as a compatibilizer for poly(lactic acid)/thermoplastic starch blends. Journal of Polymers and the Environment, 2013, 21(1): 151–159

    Article  CAS  Google Scholar 

  35. Trouton F T. On the coefficient of viscous traction and its relation to that of viscosity. Proceedings of the Royal Society of London. Series A, 1906, 77(519): 426–440

    Google Scholar 

  36. Bangarusampath D S, Ruckdäschel H, Altstädt V, Sandler J K W, Garray D, Shaffer M S P. Rheology and properties of melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites. Polymer, 2009, 50(24): 5803–5811

    Article  CAS  Google Scholar 

  37. Qiao Y H, Li Q, Jalali A, Yang J, Wang X, Zhao N, Jiang Y, Wang S, Hou J, Jiang J. In-situ microfibrillated poly(ε-caprolactone)/poly(lactic acid) composites with enhanced rheological properties, crystallization kinetics and foaming ability. Composites. Part B, Engineering, 2021, 208: 108594

    Article  CAS  Google Scholar 

  38. Rizvi A, Park C B. Dispersed polypropylene fibrils improve the foaming ability of a polyethylene matrix. Polymer, 2014, 55(16): 4199–4205

    Article  CAS  Google Scholar 

  39. Jalali A, Shahbikian S, Huneault M A, Elkoun S. Effect of molecular weight on the shear-induced crystallization of poly(lactic acid). Polymer, 2017, 112: 393–401

    Article  CAS  Google Scholar 

  40. Jalali A, Huneault M A, Elkoun S. Effect of thermal history on nucleation and crystallization of poly(lactic acid). Journal of Materials Science, 2016, 51(16): 7768–7779

    Article  CAS  Google Scholar 

  41. Rizvi A, Park C B, Favis B D. Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils. Polymer, 2015, 68: 83–91

    Article  CAS  Google Scholar 

  42. Avrami M. Kinetics of phase change. I. General theory. Journal of Chemical Physics, 1939, 7(12): 1103–1112

    Article  CAS  Google Scholar 

  43. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. Journal of Chemical Physics, 1940, 8(2): 212–224

    Article  CAS  Google Scholar 

  44. Liu H, Huang Y, Yuan L, He P, Cai Z, Shen Y, Xu Y, Yu Y, Xiong H. Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohydrate Polymers, 2010, 79(3): 513–519

    Article  CAS  Google Scholar 

  45. Naguib H E, Park C B, Reichelt N. Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004, 91(4): 2661–2668

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the Key Scientific and Technological Projects of Henan Province (Grant Nos. 232102230153, 232102230158, and for international cooperation 232102521021), the National Natural Science Joint Fund of China (Grant No. U1909219), the Key R&D Project of Henan Province (Grant No. 221111520200), the Scientific and Technological Research Project of Henan Province (Grand No. 202102210028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Jiang or Zhiyu Min.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic supplementary material

11705_2023_2342_MOESM1_ESM.pdf

Electronic Supplementary Material: Effect of polyethylene glycol on the crystallization, rheology and foamability of poly(lactic acid) containing in situ generated polyamide 6 nanofibrils

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Li, Q., Jalali, A. et al. Effect of polyethylene glycol on the crystallization, rheology and foamability of poly(lactic acid) containing in situ generated polyamide 6 nanofibrils. Front. Chem. Sci. Eng. 17, 2074–2087 (2023). https://doi.org/10.1007/s11705-023-2342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2342-8

Keywords

Navigation