Skip to main content
Log in

Synergistic catalytic effect of iron metallic glass particles in direct blue dye degradation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on the high catalytic activity of iron based metallic glass (MG) particles in dissociating direct blue dye (C32H20N6Na4O14S4) (DBD), a toxic water pollutant. We adopted high speed mechanical milling to activate the FeMG particles (of nominal composition Fe48Cr15Mo14Y2C15B6) and optimized the morphology and the particle size to achieve complete degradation of DBD in less than 20 min. The surface morphology and the particle size of the activated particles were characterized using scanning electron microscopy and transmission electron microscopy. They were found to have corrugated edge like catalytically active surfaces after mechanical activation. The dye degradation rate of the activated MG powder was characterized via UV–visible absorption spectroscopy. The rate of dye degradation was significantly faster for the activated particles (within 20 min), compared to both pristine FeMG particles as well as elemental iron particles. In addition, the dye degradation mechanism was studied using Raman and infrared spectroscopy. The catalytically activated surfaces are believed to break the–C–H–,–C–N–, and–N=N–bonds, resulting in complete degradation of DBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. T. Mester and M. Tien: Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int. Biodeterior. Biodegrad. 46, 51–59, (2000).

    Article  CAS  Google Scholar 

  2. R.G. Saratale, G.D. Saratale, J.S. Chang, and S.P. Govindwar: Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 42, 138–157 (2011).

    Article  CAS  Google Scholar 

  3. A. Agrawal and P.G. Tratnyek: Reduction of nitro aromatic compounds by zero-valent iron metal. Environ. Sci. Technol. 30, 153–160 (1995).

    Article  Google Scholar 

  4. G.R. Eykholt and D.T. Davenport: Dechlorination of the chloroacetanilide herbicides alachlor and metolachlor by iron metal. Environ. Sci. Technol. 32, 1482–1487 (1998).

    Article  CAS  Google Scholar 

  5. W-x. Zhang: Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5, 323–332 (2003).

    Article  CAS  Google Scholar 

  6. J. Cao, L. Wei, Q. Huang, L. Wang, and S. Han: Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38, 565–571 (1999).

    Article  CAS  Google Scholar 

  7. Y. Yoshida, S. Ogata, S. Nakamatsu, T. Shimamune, K. Kikawa, H. Inoue, and C. Iwakura: Decoloration of azo dye using atomic hydrogen permeating through a Pt-modified palladized Pd sheet electrode. Electrochim. Acta 45, 409–414 (1999).

    Article  CAS  Google Scholar 

  8. S. Nam and P.G. Tratnyek: Reduction of azo dyes with zero-valent iron. Water Res. 34, 1837–1845 (2000).

    Article  CAS  Google Scholar 

  9. T. Bigg and S.J. Judd: Kinetics of reductive degradation of azo dye by zero-valent iron. Process Saf. Environ. Prot. 79, 297–303 (2001).

    Article  CAS  Google Scholar 

  10. W.A. Arnold and A.L. Roberts: Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 34, 1794–1805 (2000).

    Article  CAS  Google Scholar 

  11. S. Choe, Y-Y. Chang, K-Y. Hwang, and J. Khim: Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41, 1307–1311 (2000).

    Article  CAS  Google Scholar 

  12. J. Schroers: On the formability of bulk metallic glass in its supercooled liquid state. Acta Mater. 56, 471–478 (2008).

    Article  CAS  Google Scholar 

  13. A.L. Greer: Metallic glasses. Science 267, 1947–1953 (1995).

    Article  CAS  Google Scholar 

  14. M. Carmo, R.C. Sekol, S. Ding, G. Kumar, J. Schroers, and A.D. Taylor: Bulk metallic glass nanowire architecture for electrochemical applications. ACS Nano 5, 2979–2983 (2011).

    Article  CAS  Google Scholar 

  15. R.C. Sekol, G. Kumar, M. Carmo, F. Gittleson, N. Hardesty-Dyck, S. Mukherjee, J. Schroers, and A.D. Taylor: Bulk metallic glass micro fuel cell. Small 9, 2081–2085 (2013).

    Article  CAS  Google Scholar 

  16. J-Q. Wang, Y-H. Liu, M-W. Chen, G-Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, and J.H. Perepezko: Rapid degradation of azo dye by Fe-based metallic glass powder. Adv. Funct. Mater. 22, 2567–2570 (2012).

    Article  CAS  Google Scholar 

  17. P. Liu, J.L. Zhang, M.Q. Zha, and C.H. Shek: Synthesis of an Fe rich amorphous structure with a catalytic effect to rapidly decolorize azo dye at room temperature. ACS Appl. Mater. Interfaces 6, 5500–5505 (2014).

    Article  CAS  Google Scholar 

  18. C. Zhang, Z. Zhu, H. Zhang, and Z. Hu: Rapid decolorization of Acid Orange II aqueous solution by amorphous zero-valent iron. J. Environ. Sci. 24, 1021–1026 (2012).

    Article  CAS  Google Scholar 

  19. C. Zhang, Z. Zhu, H. Zhang, and Z. Hu: On the decolorization property of Fe–Mo–Si–B alloys with different structures. J. Non-Cryst. Solids 358, 61–64 (2012).

    Article  CAS  Google Scholar 

  20. S. Özkar: Enhancement of catalytic activity by increasing surface area in heterogeneous catalysis. Appl. Surf. Sci. 256, 1272–1277 (2009).

    Article  Google Scholar 

  21. N.D. Lang and W. Kohn: Theory of metal surfaces: Charge density and surface energy. Phys. Rev. B 1, 4555–4568 (1970).

    Article  Google Scholar 

  22. O. Rodriguez de la Fuente, M.A. Gonzalez-Barrio, V. Navarro, B.M. Pabon, I. Palacio, and A. Mascaraque: Surface defects and their influence on surface properties. J. Phys.: Condens. Matter 25, 484008 (2013).

    CAS  Google Scholar 

  23. B. Hammer and J.K. Nørskov: Theoretical surface science and catalysis—calculations and concepts. In Advances in Catalysis, Vol. 45, H.K. Bruce and C. Gates eds. (Academic Press, New York, NY, 2000); pp. 71–129.

    Google Scholar 

  24. E.J. Weber: Iron-mediated reductive transformations: Investigation of reaction mechanism. Environ. Sci. Technol. 30, 716–719 (1996).

    Article  CAS  Google Scholar 

  25. L.J. Matheson and P.G. Tratnyek: Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045–2053 (1994).

    Article  CAS  Google Scholar 

  26. Y. Xia, Y. Xiong, B. Lim, and S.E. Skrabalak: Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?Angew. Chem., Int. Ed. 48, 60–103 (2009).

    Article  CAS  Google Scholar 

  27. N. Tian, Z-Y. Zhou, S-G. Sun, Y. Ding, and Z.L. Wang: Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  CAS  Google Scholar 

  28. Y. Ma, Q. Kuang, Z. Jiang, Z. Xie, R. Huang, and L. Zheng: Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew. Chem., Int. Ed. 47, 8901–8904 (2008).

    Article  CAS  Google Scholar 

  29. R. Abazari, F. Heshmatpour, and S. Balalaie: Pt/Pd/Fe trimetallic nanoparticle produced via reverse micelle technique: Synthesis, characterization, and its use as an efficient catalyst for reductive hydrodehalogenation of aryl and aliphatic halides under mild conditions. ACS Catal. 3, 139–149 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors gratefully acknowledge the Center for Advanced Research & Technology (CART) at the University of North Texas (UNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundeep Mukherjee.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Bandi, V., Arora, H.S. et al. Synergistic catalytic effect of iron metallic glass particles in direct blue dye degradation. Journal of Materials Research 30, 1121–1127 (2015). https://doi.org/10.1557/jmr.2015.90

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.90

Navigation