Skip to main content
Log in

A comparison of nanoindentation creep deformation characteristics of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) exoskeletons

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This investigation reports mechanical properties of the exoskeleton of deep sea shrimp, Rimicaris exoculata, at temperatures ranging from 25 to 80 °C measured using nanoindentation experiments. The measured properties are compared with the corresponding shallow water shrimp (Pandalus platyceros) exoskeleton properties. Scanning electron microscopy suggests that both types of shrimp exoskeletons have the twisted plywood, Bouligand structure. However, they differ in the volume fraction and distribution of mineral content. The variations in the nanoindentation measured hardness values of the examined shrimp exoskeletons are found to be strongly correlated with the corresponding compositional difference between the two exoskeleton types. Nanoindentation creep strain rate measurements are performed to provide an assessment of the two types of exoskeleton for the role of proteins and minerals to cause difference in behavior and properties between the two shrimp species. The measured creep load–depth data are fitted with a viscoelastic creep function to find the creep compliance as a function of experimentally varying temperature and in the context of natural variations in mineral content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. G. Mayer: New classes of tough composite materials—Lessons from natural rigid biological systems. Mater. Sci. Eng., C 26(8), 1261 (2006).

    CAS  Google Scholar 

  2. G. Mayer: New toughening concepts for ceramic composites from rigid natural materials. J. Mech. Behav. Biomed. Mater. 4(5), 670 (2011).

    Google Scholar 

  3. B. Chen, X. Peng, J.G. Wang, and X. Wu: Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. Ceram. Int. 30(7), 2011 (2004).

    CAS  Google Scholar 

  4. H.R. Hepburn, I. Joffe, N. Green, and K.J. Nelson: Mechanical properties of a crab shell. Comp. Biochem. Physiol., Part A: Physiol. 50(3), 551 (1975).

    Google Scholar 

  5. F. Barthelat, J.E. Rim, and H.D. Espinosa: A Review on the Structure and Mechanical Properties of Mollusk Shells–Perspectives on Synthetic Biomimetic Materials. In Applied Scanning Probe Methods XIII. B. Bhushan, H. Fuchs, eds. (Springer, Berlin Heidelberg, 2009); 17–44.

    Google Scholar 

  6. F. Boßelmann, P. Romano, H. Fabritius, D. Raabe, and M. Epple: The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim. Acta 463(1–2), 65 (2007).

    Google Scholar 

  7. D. Raabe, P. Romano, C. Sachs, H. Fabritius, A. Al-Sawalmih, S-B. Yi, G. Servos, and H. Hartwig: Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater. Sci. Eng., A 421(1), 143 (2006).

    Google Scholar 

  8. D. Raabe, C. Sachs, and P. Romano: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53(15), 4281 (2005).

    CAS  Google Scholar 

  9. Y. Bouligand: Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4(2), 189 (1972).

    CAS  Google Scholar 

  10. M.M. Giraud-Guille: Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16(1), 75 (1984).

    CAS  Google Scholar 

  11. P-Y. Chen, A.Y.M. Lin, J. McKittrick, and M.A. Meyers: Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4(3), 587 (2008).

    Google Scholar 

  12. Y. Seki, B. Kad, D. Benson, and M.A. Meyers: The toucan beak: Structure and mechanical response. Mater. Sci. Eng., C 26(8), 1412 (2006).

    CAS  Google Scholar 

  13. Y. Seki, M.S. Schneider, and M.A. Meyers: Structure and mechanical behavior of a toucan beak. Acta Mater. 53(20), 5281 (2005).

    CAS  Google Scholar 

  14. J. Lian and J. Wang: Microstructure and mechanical properties of Dungeness crab exoskeletons. In Mechanics of Biological Systems and Materials, Vol. 2, T. Proulx ed.; Springer: New York, 2011; pp. 93.

    Google Scholar 

  15. C.A. Melnick, Z. Chen, and J.J. Mecholsky: Hardness and toughness of exoskeleton material in the stone crab, Menippe mercenaria. J. Mater. Res. 11(11), 2903 (1996).

    CAS  Google Scholar 

  16. H. Fricke, O. Giere, K. Stetter, G.A. Alfredsson, J.K. Kristjansson, P. Stoffers, and J. Svavarsson: Hydrothermal vent communities at the shallow subpolar Mid-Atlantic ridge. Mar. Biol. 102(3), 425 (1989).

    Google Scholar 

  17. D. Desbruyères, M. Biscoito, J.C. Caprais, A. Colaço, T. Comtet, P. Crassous, Y. Fouquet, A. Khripounoff, N. Le Bris, K. Olu, R. Riso, P.M. Sarradin, M. Segonzac, and A. Vangriesheim: Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep Sea Res., Part I 48(5), 1325 (2001).

    Google Scholar 

  18. S.T. Ahyong: New species and new records of hydrothermal vent shrimps from New Zealand (Caridea: Alvinocarididae, Hippolytidae). Crustaceana 82(7), 775 (2009).

    Google Scholar 

  19. R.C. Vrijenhoek: Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Mol. Ecol. 19(20), 4391 (2010).

    Google Scholar 

  20. D.P. Connelly, J.T. Copley, B.J. Murton, K. Stansfield, P.A. Tyler, C.R. German, C.L. Van Dover, D. Amon, M. Furlong, N. Grindlay, N. Hayman, V. Huhnerbach, M. Judge, T. Le Bas, S. McPhail, A. Meier, K-i. Nakamura, V. Nye, M. Pebody, R.B. Pedersen, S. Plouviez, C. Sands, R.C. Searle, P. Stevenson, S. Taws, and S. Wilcox: Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre. Nat. Commun. 3, 620 (2012).

    Google Scholar 

  21. A. Clarke and K.P.P. Fraser: Why does metabolism scale with temperature?Funct. Ecol. 18(2), 243 (2004).

    Google Scholar 

  22. F. Smith, A. Brown, N.C. Mestre, A.J. Reed, and S. Thatje: Thermal adaptations in deep-sea hydrothermal vent and shallow-water shrimp. Deep Sea Res., Part II 92, 234 (2013).

    CAS  Google Scholar 

  23. M. Spanopoulos-Hernández, C.A. Martínez-Palacios, R.C. Vanegas-Pérez, C. Rosas, and L.G. Ross: The combined effects of salinity and temperature on the oxygen consumption of juvenile shrimps Litopenaeus stylirostris (Stimpson, 1874). Aquaculture 244(1–4), 341 (2005).

    Google Scholar 

  24. E.L. Allan, P.W. Froneman, and A.N. Hodgson: Effects of temperature and salinity on the standard metabolic rate (SMR) of the caridean shrimp Palaemon peringueyi. J. Exp. Mar. Biol. Ecol. 337(1), 103 (2006).

    CAS  Google Scholar 

  25. S. Hourdez and F. Lallier: Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates. Rev. Environ. Sci. Bio/Technol. 6(1–3), 143 (2007).

    CAS  Google Scholar 

  26. A. Oliphant, S. Thatje, A. Brown, M. Morini, J. Ravaux, and B. Shillito: Pressure tolerance of the shallow-water caridean shrimp Palaemonetes varians across its thermal tolerance window. J. Exp. Biol. 214(7), 1109 (2011).

    Google Scholar 

  27. S. Ravichandran, G. Rameshkumar, and A.R. Prince: Biochemical composition of shell and flesh of the Indian white shrimp Penaeus indicus (H. milne Edwards 1837). Am.-Eurasian J. Sci. Res. 4(3), 191 (2009).

    CAS  Google Scholar 

  28. F. Ehigiator and E. Oterai: Chemical composition and amino acid profile of a caridean prawn (Macrobrachium vollenhovenii) from Ovia river and tropical periwinkle (Tympanotonus fuscatus) from Benin river, Edo state, Nigeria. Int. J. Res. Rev. Appl. Sci. 11(1), (2012).

  29. I.A. Emmanuel, H.O. Adubiaro, and O.J. Awodola: Comparability of chemical composition and functional properties of shell and flesh of Penaeus notabilis Pakistan. J. Nutr. 7(6), 741 (2008).

    Google Scholar 

  30. F. Shahidi and J. Synowiecki: Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J. Agric. Food Chem. 39(8), 1527 (1991).

    CAS  Google Scholar 

  31. M. Islam, S. Masum, M. Rahman, M. Moll, A. Shaikh, and S. Roy: Preparation of chitosan from shrimp shell and investigation of its properties. Int. J. Basic Appl. Sci. 11(1), 116 (2011).

    Google Scholar 

  32. R.H. Rødde, A. Einbu, and K.M. Vårum: A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr. Polym. 71(3), 388 (2008).

    Google Scholar 

  33. H.M. Ibrahim, M.F. Salama, and H.A. El-Banna: Shrimp’s waste: Chemical composition, nutritional value and utilization. Food/Nahrung 43(6), 418 (1999).

    CAS  Google Scholar 

  34. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).

    CAS  Google Scholar 

  35. G. Pharr: Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng., A 253(1), 151 (1998).

    Google Scholar 

  36. M. Gan and V. Tomar: Scale and temperature dependent creep modeling and experiments in materials. JOM 63(9), 27 (2011).

    Google Scholar 

  37. M. Gan and V. Tomar: Role of length scale and temperature in indentation induced creep behavior of polymer derived Si-C-O ceramics. Mater. Sci. Eng., A 527, 7615 (2010).

    Google Scholar 

  38. D. Verma and V. Tomar: Structural-nanomechanical property correlation of shallow water shrimp (Pandalus platyceros) exoskeleton at elevated temperature. J. Bionic Eng. 11(3), 360 (2014).

    Google Scholar 

  39. D. Verma and V. Tomar: An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton. Mater. Sci. Eng., C 44, 371 (2014).

    CAS  Google Scholar 

  40. D. Verma and V. Tomar: An investigation into mechanical strength of exoskeleton of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) at elevated temperatures. Mater. Sci. Eng., C 49, 243 (2015).

    CAS  Google Scholar 

  41. G. Feng and A. Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17(3), 660 (2002).

    CAS  Google Scholar 

  42. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50(1), 23 (2002).

    CAS  Google Scholar 

  43. C. Gamonpilas and E.P. Busso: On the effect of substrate properties on the indentation behaviour of coated systems. Mater. Sci. Eng., A 380(1–2), 52 (2004).

    Google Scholar 

  44. D. Kramer, A. Volinsky, N. Moody, and W. Gerberich: Substrate effects on indentation plastic zone development in thin soft films. J. Mater. Res. 16(11), 3150 (2001).

    CAS  Google Scholar 

  45. J. Koyanagi, S. Yoneyama, A. Nemoto, and J.D.D. Melo: Time and temperature dependence of carbon/epoxy interface strength. Compos. Sci. Technol. 70(9), 1395 (2010).

    CAS  Google Scholar 

  46. R.F. Tilton, Jr., J.C. Dewan, and G.A. Petsko: Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 31(9), 2469 (1992).

    CAS  Google Scholar 

  47. H. Frauenfelder, G.A. Petsko, and D. Tsernoglou: Temperature-dependent x-ray diffraction as a probe of protein structural dynamics. Nature 280(5723), 558 (1979).

    CAS  Google Scholar 

  48. Y-T. Cheng, W. Ni, and C-M. Cheng: Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements. J. Mater. Res. 20(11), 3061 (2005).

    CAS  Google Scholar 

  49. B. Tang and A. Ngan: Accurate measurement of tip–sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18(05), 1141 (2003).

    CAS  Google Scholar 

  50. A.H.W. Ngan, H.T. Wang, B. Tang, and K.Y. Sze: Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int. J. Solids Struct. 42(5–6), 1831 (2005).

    Google Scholar 

  51. M. Oyen: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86(33–35), 5625 (2006).

    CAS  Google Scholar 

  52. M.L. Oyen and R.F. Cook: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18(01), 139 (2003).

    CAS  Google Scholar 

  53. R.F. Cook and M.L. Oyen: Nanoindentation behavior and mechanical properties measurement of polymeric materials. Int. J. Mater. Res. 98(5), 370 (2007).

    CAS  Google Scholar 

  54. H. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7(3–4), 189 (2003).

    Google Scholar 

  55. A. Shokuhfar, A. Zare-Shahabadi, A-A. Atai, S. Ebrahimi-Nejad, and M. Termeh: Predictive modeling of creep in polymer/layered silicate nanocomposites. Polym. Test. 31(2), 345 (2012).

    CAS  Google Scholar 

  56. A.K. Nikolaidis, D.S. Achilias, and G.P. Karayannidis: Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites. Eur. Polym. J. 48(2), 240 (2012).

    CAS  Google Scholar 

  57. A. Leszczyńska, J. Njuguna, K. Pielichowski, and J.R. Banerjee: Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim. Acta 453(2), 75 (2007).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere thanks to Dr. Juliette Ravaux, Université Pierre et Marie Curie for providing the samples of Rimicaris exoculata. Also, the authors would like to acknowledge the excellent technical assistance of Dr. Christopher J. Gilpin, Chia-Ping Huang, and Laurie Mueller with the scanning electron microscopy at Purdue University. Lastly, Devendra Verma would like to thank his colleagues Dr. Devendra Dubey, Dr. Ming Gan, Dr. You Sung Han, Dr. Hongsuk Lee, Tao Qu, and Yang Zhang for helpful discussions. This research was supported by US-NSF grant CMMI-1131112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Tomar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, D., Tomar, V. A comparison of nanoindentation creep deformation characteristics of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) exoskeletons. Journal of Materials Research 30, 1110–1120 (2015). https://doi.org/10.1557/jmr.2015.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.69

Navigation