Skip to main content
Log in

Effect of a transverse magnetic field on solidification structure in directionally solidified Al-40 wt% Cu alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Effect of a transverse magnetic field on macrosegregation and growth of primary Al2Cu dendrites in directionally solidified Al-40 wt% Cu alloys was investigated experimentally. The experimental results indicated that the magnetic field caused the formation of channel-like and freckle segregations. It was also found that the application of the magnetic field benefited the growth of primary Al2Cu dendrites and the axial segregation. Moreover, the magnetic field decreased the primary dendrite spacing and the mushy zone length; however these effects weakened with the increase of the magnetic field intensity. The above experimental results should be attributed to the formation of the thermoelectric magnetic convection during directional solidification under the transverse magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. M.I. Bergman, D.R. Fearn, J. Bloxham, and M.C. Shannon: Convection and channel formation in solidifying Pb-Sn alloys. Metall. Mater. Trans. A 28, 859 (1997).

    Google Scholar 

  2. L. Yuan and P.D. Lee: A new mechanism for freckle initiation based on microstructural level simulation. Acta Mater. 60, 4917 (2012).

    Article  CAS  Google Scholar 

  3. M.D. Dupouy, D. Camel, and J.J. Favier: Natural convective effects in directional dendritic solidification of binary metallic alloys: Dendritic array primary spacing. Acta Metall. Mater. 40, 1791 (1992).

    Article  CAS  Google Scholar 

  4. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification. J. Cryst. Growth 183, 690 (1998).

    Article  CAS  Google Scholar 

  5. M. Medina, Y. Du Terrail, F. Durand, and Y. Fautrelle: Channel segregation during solidification and the effects of an alternating traveling magnetic field. Metall. Mater. Trans. B 35, 743 (2004).

    Article  Google Scholar 

  6. S. Boden, S. Eckert, and G. Gerbeth: Visualization of freckle formation induced by forced melt convection in solidifying GaIn alloys. Mater. Lett. 64, 1340 (2010).

    Article  CAS  Google Scholar 

  7. S. Steinbach and L. Ratke: The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metall. Mater. Trans. A 38, 1388 (2007).

    Article  Google Scholar 

  8. W.V. Youdelis and R.C. Dorward: Directional solidification of aluminium-copper alloys in a magnetic field. Can. J. Phys. 44, 139 (1966).

    Article  CAS  Google Scholar 

  9. R. Moreau, O. Laskar, and M. Tanaka: Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime. Mater. Sci. Eng., A 173, 93 (1993).

    Article  Google Scholar 

  10. S.N. Tewari, R. Shah, and H. Song: Effect of magnetic field on the microstructure and macrosegregation in directionally solidified Pb-Sn alloys. Metall. Mater. Trans. A 25, 1535 (1994).

    Article  Google Scholar 

  11. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: Modification of interdendritic convection in directional solidification by a uniform magnetic field. Acta Mater. 46, 4067 (1998).

    Article  CAS  Google Scholar 

  12. X. Li, Y. Fautrelle, and Z.M. Ren: Influence of thermoelectric effects on the solid–liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al–Cu alloys under a magnetic field. Acta Mater. 55, 3803 (2007).

    Article  CAS  Google Scholar 

  13. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: NIH image to ImageJ: 25 Years of image analysis. Nat. Methods 671, 9 (2012).

    Google Scholar 

  14. A. Kao, P.D. Lee, and K. Pericleous: Influence of a slow rotating magnetic field in thermoelectric magnetohydrodynamic processing of alloys. ISIJ Int. 54, 1283 (2014).

    Article  CAS  Google Scholar 

  15. A. Kao, N. Shevchenko, O. Roshchupinka, S. Eckert, and K. Pericleous: The effects of natural, forced and thermoelectric magnetohydrodynamic convection during the solidification of thin sample alloys. IOP Conf. Ser.: Mater. Sci. Eng. 84, 012018 (2015).

    Article  Google Scholar 

  16. C. Beckermann: Modelling of macrosegregation: Applications and future needs. Int. Mater. Rev. 47, 243 (2002).

    Article  CAS  Google Scholar 

  17. M.D. Dupouy, D. Camel, and J.J. Favier: Natural convective effects in directional dendritic solidification of binary metallic alloys: Dendritic array morphology. J. Cryst. Growth 126, 480 (1993).

    Article  CAS  Google Scholar 

  18. L. Makkonen: Solid fraction in dendritic solidification of a liquid. Appl. Phys. Lett. 96, 091910 (2010).

    Article  Google Scholar 

  19. S.N. Ojha, G. Ding, Y. Lu, J. Reye, and S.N. Tewari: Macrosegregation caused by thermosolutal convection during directional solidification of Pb-Sb alloys. Metall. Mater. Trans. A 30, 2167 (1999).

    Article  Google Scholar 

  20. M. Gündüz and E. Çadırlı: Directional solidification of aluminium–copper alloys. Mater. Sci. Eng., A 327, 167 (2002).

    Article  Google Scholar 

  21. X. Li, Z.M. Ren, A. Gagnoud, O. Budebkova, and Y. Fautrelle: Effects of thermoelectric magnetic convection on the solidification structure during directional solidification under lower transverse magnetic field. Metall. Trans. A 42, 3459 (2011).

    Article  CAS  Google Scholar 

  22. C.Y. Ho, M.W. Ackerman, K.Y. Wu, T.N. Havill, and R.H. Bogaard: Electrical resistivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data 12, 184 (1983).

    Article  Google Scholar 

  23. J.L. Bretonnet, J. Auchet, and J.G. Gasser: Electrical transport properties of the liquid Al–Cu alloys. J. Non-Cryst. Solids 395, 117 (1990).

    Google Scholar 

  24. Y. Shen, Z.M. Ren, and X. Li: Effect of a low axial magnetic field on the primary Al2Cu phase growth in a directionally solidified Al–Cu hypereutectic alloy. J. Cryst. Growth 336, 67 (2011).

    Article  CAS  Google Scholar 

  25. Y. Plevachuk, V. Sklyarchuk, and A. Yakymovychal: Density, Viscosity, and electrical conductivity of Hypoeutectic Al–Cu liquid alloys. Metall. Mater. Trans. A 39, 3040 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported partly by the European Space Agency through the Bl-inter 09_473220, National Natural Science Foundation of China (Nos. 51271109 and 51171106), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Du, D., Gagnoud, A. et al. Effect of a transverse magnetic field on solidification structure in directionally solidified Al-40 wt% Cu alloys. Journal of Materials Research 31, 213–221 (2016). https://doi.org/10.1557/jmr.2015.396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.396

Navigation