Skip to main content
Log in

Thermostability and photocatalytic performance of BiOCl0.5Br0.5 composite microspheres

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Novel 1–1.5 μm BiOCl0.5Br0.5 composite microspheres were prepared by coprecipitation method, then calcined at different temperatures. The BiOCl0.5Br0.5 samples before and after calcination were characterized by powder x-ray diffraction, thermogravimetric analysis, N2-physical adsorption, scanning electron microscopy, Fourier transformed infrared spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The photocatalytic activity of the samples was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. The results showed that the thermostability of BiOCl0.5Br0.5 composite microspheres is lower than BiOCl and higher than BiOBr. Heat treatment at low 500 °C could obviously improve the crystallinity of BiOCl0.5Br0.5 microspheres, resulting in a significant increase in activity. BiOCl0.5Br0.5 microspheres calcined at 450 °C displayed the highest activity and stability. At elevated temperature calcination (600–800 °C), phase transition occurred over BiOCl0.5Br0.5. Br element was gradually lost and new phase of Bi24O31Br10 appeared. High temperature calcination did not change the morphology of BiOCl0.5Br0.5, but the surface area and surface OH groups decreased, which resulted in a large decrease in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Y. Zhang, T. Xia, M. Shang, P. Wallenmeyer, D. Katelyn, A. Peterson, J. Murowchick, L. Dong, and X. Chen: Structural evolution from TiO2 nanoparticles to nanosheets and their photocatalytic performance in hydrogen generation and environmental pollution removal. RSC Adv. 4, 16146–16152 (2014).

    Article  CAS  Google Scholar 

  2. C.W. Yeh, C.H. Hung, K.R. Hu, and C.C. Yang: Vanadium-doped WO3/TiO2 microporous film as visible-light photocatalyst. Environ. Eng. Sci. 31(1), 42–48 (2014).

    Article  CAS  Google Scholar 

  3. N. Mezioud, N. Bouziane, M.A. Malouki, A. Zertal, and G. Mailhot: Methabenzthiazuron degradation with illuminated TiO2 aqueous suspensions. Kinetic and reactional pathway investigations. J. Photochem. Photobiol., A 288, 13–22 (2014).

    Article  CAS  Google Scholar 

  4. M.V. Sofianou, M. Tassi, V. Psycharis, N. Boukos, S. Thanos, T. Vaimakis, J.G. Yu, and C. Trapalis: Solvothermal synthesis and photocatalytic performance of Mn4+-doped anatase nanoplates with exposed {0 0 1} facets. Appl. Catal., B 162, 27–33 (2015).

    Article  CAS  Google Scholar 

  5. Z.B. Sun, Y.D. Yin, N.Y. Fan, G.Z. Huang, Q.Y. Qu, Y.Q. Du, Y.X. Chen, and S.C. Ma: Preparation and photocatalytic activity of (Fe3+/Gd3+/TiO2) coated SiO2 catalyst. Chin. J. Mater. Res. 28, 633–640 (2014).

    CAS  Google Scholar 

  6. X. Li, T. Xia, C. Xu, J. Murowchick, and X. Chen: Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts. Catal. Today 225, 64–73 (2014).

    Article  CAS  Google Scholar 

  7. W.Q. Zhou, C.L. Yu, Q.Z. Fan, L.F. Wei, J.C. Chen, and J.C. Yu: Ultrasonic fabrication of N-doped TiO2 nanocrystals with mesoporous structure and enhanced visible light photocatalytic activity. Chin. J. Catal. 34(6), 1250–1255 (2013).

    Article  CAS  Google Scholar 

  8. Y. Tao, Z.N. Han, Z.L. Cheng, Q.S. Liu, F.X. Wei, K.E. Ting, and X.J. Yin: Synthesis of nanostructured TiO2 photocatalyst with ultrasonication at low temperature. Chem. Mater. Sci. 3(1), 29–36 (2015).

    CAS  Google Scholar 

  9. L. Chen, R. Huang, M. Xiong, Q. Yuan, J. He, J. Jia, M.Y. Yao, S.L. Luo, C.T. Au, and S.F. Yin: Room-temperature synthesis of flower-like BiOX (X = Cl, Br, I) hierarchical structures and their visible-light photocatalytic activity. Inorg. Chem. 52(19), 11118–11125 (2013).

    Article  CAS  Google Scholar 

  10. R.A. Hao, S.W. Cao, P. Zhou, and J.G. Yu: The research progress of bismuth photocatalysts under visible light. Chin. J. Catal. 35(7), 989–1007 (2014).

    Article  Google Scholar 

  11. H.L. Lin, C.C. Zhou, J. Cao, and S.F. Chen: Ethylene glycol-assisted synthesis, photoelectrochemical and photocatalytic properties of BiOI microflowers. Chin. Sci. Bull. 59(27), 3420–3426 (2014).

    Article  CAS  Google Scholar 

  12. P.P. Xiao, L.L. Zhu, Y.C. Zhu, and Y.T. Qian: Selective hydrothermal synthesis of BiOBr microflowers and Bi2O3 shuttles with concave surfaces. J. Solid State Chem. 184(6), 1459–1464 (2011).

    Article  CAS  Google Scholar 

  13. H. Gnayem and Y. Sasson: Hierarchical nanostructured 3D flowerlike BiOClxBr1−x semiconductors with exceptional visible light photocatalytic activity. ACS Catal. 3(2), 186–191 (2013).

    Article  CAS  Google Scholar 

  14. X.M. Mao and C.M. Fan: Effect of light response on the photocatalytic activity of BiOClxBr1−x in the removal of Rhodamine B from water. Int. J. Miner., Metall. Mater. 20(11), 1089–1096 (2013).

    Article  CAS  Google Scholar 

  15. Z.Q. He, Y.Q. Shi, C. Gao, L.N. Wen, J.M. Chen, and S. Song: BiOCl/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J. Phys. Chem. C 118(1), 389–398 (2014).

    Article  CAS  Google Scholar 

  16. L. Chen, S.F. Yin, S.L. Luo, R. Huang, Q. Zhang, T. Hong, and C.T. Au: Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater. Ind. Eng. Chem. Res. 51(19), 6760–6768 (2012).

    Article  CAS  Google Scholar 

  17. J. Jiang, X. Zhang, P.B. Sun, and L.Z. Zhang: ZnO/BiOI heterostructures: Photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J. Phys. Chem. C 115(42), 20555–20564 (2011).

    Article  CAS  Google Scholar 

  18. Z.K. Cui, L.W. Mi, W.J. Fa, Z. Zhen, and D.W. Zeng: Preparation and photocatalytic performance of Pt/BiOCl nanostructures. Chin. J. Mater. Res. 27, 583–588 (2013).

    CAS  Google Scholar 

  19. C. Chang, L.Y. Zhu, Y. Fu, and X.L. Chu: Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol A under simulated solar light irradiation. Chem. Eng. J. 233, 305–314 (2013).

    Article  CAS  Google Scholar 

  20. L.Q. Ye, J.Y. Liu, C.Q. Gong, L.H. Tian, T.Y. Peng, and L. Zan: Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: Surface plasmon resonance and z-scheme bridge. ACS Catal. 2(8), 1677–1683 (2012).

    Article  CAS  Google Scholar 

  21. W.Q. Cui, W.J. An, L. Liu, J.S. Hu, and Y.H. Liang: Preparation and photocatalytic activity of flower microspheres BiOBr photocatalyst. J. Funct. Mater. 44, 3266–3270 (2013).

    CAS  Google Scholar 

  22. J.X. Xia, S. Yin, H.M. Li, X. Hui, Y.S. Yan, and Q. Zhang: Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid. Langmuir 27(3), 1200–1206 (2011).

    Article  CAS  Google Scholar 

  23. D.Q. Zhang, M.C. Wen, B. Jiang, G.S. Li, and J.C. Yu: Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment. J. Hazard. Mater. 211–212, 104–111 (2012).

    Article  Google Scholar 

  24. C.L. Yu, F.F. Cao, X. Li, G. Li, Y. Xie, J.C. Yu, Q. Shu, and Q.Z. Fan: Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chem. Eng. J. 219, 86–95 (2013).

    Article  CAS  Google Scholar 

  25. X.Z. Li, H. Liu, L.F. Cheng, and H.J. Tong: Photocatalytic oxidation using a new catalyst-TiO2 microsphere for water and wastewater treatment. Environ. Sci. Technol. 37(17), 3989–3994 (2003).

    Article  CAS  Google Scholar 

  26. C.L. Yu, K. Yang, Y. Xie, Q.Z. Fan, J.C. Yu, Q. Shu, and C.Y. Wang: Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 5, 2142–2151 (2013).

    Article  CAS  Google Scholar 

  27. Q.Z. Fan: Preparation, Thermostability and Catalytic Properties of Bismuth Oxide Halogen (Jiangxi University of Science and technology, Ganzhou, 2014).

    Google Scholar 

  28. C.L. Yu, W.Q. Zhou, J.C. Yu, F.F. Cao, and X. Li: Thermal stability, microstructure and photocatalytic activity of the bismuth oxybromide photocatalyst. Chin. J. Chem. 30, 721–726 (2012).

    Article  CAS  Google Scholar 

  29. C.L. Yu, C.F. Fan, J.M. Yu, W.Q. Zhou, and K. Yang: Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV-light irradiation. Mater. Res. Bull. 46(1), 140–146 (2011).

    Article  CAS  Google Scholar 

  30. M. Umadevi, M. Sangari, R. Parimaladevi, A. Sivanantham, and J. Mayandi: Enhanced photocatalytic, antimicrobial activity and photovoltaic characteristics of fluorine doped TiO2 synthesized under ultrasound irradiation. J. Fluorine Chem. 156, 209–213 (2013).

    Article  CAS  Google Scholar 

  31. C.L. Yu, J.M. Yu, and M. Chan: Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres. J. Solid State Chem. 182(5), 1061–1069 (2009).

    Article  CAS  Google Scholar 

  32. X. Zhang, L.Z. Zhang, T.F. Xie, and D.J. Wang: Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem. C 113, 7371–7378 (2009).

    Article  CAS  Google Scholar 

  33. W. Zhao, C.C. Chen, X.Z. Li, J.C. Zhao, H. Hidaka, and N. Serpone: Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: Influence of platinum as a functional co-catalyst. J. Phys. Chem. B 106(19), 5022–5028 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Nos. 21567008, 21067004, 21263005), Jiangxi Province Natural Science Foundation of Youth Science Fund Program (No. 20133BAB21003), Jiangxi Province Education Department of Science and Technology Project (No. KJLD14046), Jiangxi Province Yuan Hang Gong Cheng Project (No. 2014-154), Jiangxi Province Youth Scientists Cultivating Object Program (No. 20122BCB23015), Jiangxi Province Graduate Student Innovation Foundation Project 2014 (Nos. 3104000089, 3104100013), Jiangxi University of Science and Technology Graduate Student Innovation Foundation Project 2013 (No. 3104100039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, W., Yu, C., Li, J. et al. Thermostability and photocatalytic performance of BiOCl0.5Br0.5 composite microspheres. Journal of Materials Research 30, 3125–3133 (2015). https://doi.org/10.1557/jmr.2015.299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.299

Navigation