Skip to main content
Log in

Ethylene glycol-assisted synthesis, photoelectrochemical and photocatalytic properties of BiOI microflowers

  • Article
  • Materials Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Hierarchical bismuth oxyiodide (BiOI) microflower photocatalysts were synthesized by hydrolysis at room temperature. The concentration of ethylene glycol modulated the resulting BiOI morphology. The morphology, elemental composition, crystal phase structure, and absorption properties of the BiOI samples were characterized. Under visible light irradiation (λ > 400 nm), BiOI (S10) with a microflower morphology exhibited the highest photocatalytic activity in the degradation of methyl orange. The corresponding apparent pseudo-first-order rate constant was 0.826 h−1. The trend in photocatalytic activities of the prepared BiOI samples coincided with the trend in their photocurrents. A strategy for preparing hierarchical BiOI microflowers with good visible light-induced photocatalytic activity is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shen ZY, Chen G, Wang Q et al (2012) Sonochemistry synthesis and enhanced photocatalytic H2-production activity of nanocrystals embedded in CdS/ZnS/In2S3 microspheres. Nanoscale 4:2010–2017

    Article  Google Scholar 

  2. Zou ZG, Ye JH, Sayamal K et al (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  Google Scholar 

  3. Mills A, Davies RH, Worsley D (1993) Water purification by semiconductor photocatalysis. Chem Soc Rev 22:417–425

    Article  Google Scholar 

  4. Chatterjee D, Mahata A (2001) Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light. Appl Catal B: Environ 33:119–125

    Article  Google Scholar 

  5. Xu ZD, Li YX, Peng SQ et al (2012) NaCl-assisted low temperature synthesis of layered Zn–In–S photocatalyst with high visible-light activity for hydrogen evolution. RSC Adv 2:3458–3466

    Article  Google Scholar 

  6. Kudo A, Kato H, Nakagawa S (2000) Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. J Phys Chem B 104:571–575

    Google Scholar 

  7. Yin J, Zou ZG, Ye JH (2004) Photophysical and photocatalytic activities of a novel photocatalyst BaZn1/3Nb2/3O3. J Phys Chem B 108:12790–12794

    Google Scholar 

  8. Li YX, Hu YF, Peng SQ et al (2009) Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J Phys Chem C 113:9352–9358

    Article  Google Scholar 

  9. Zhang X, Ai ZH, Jia FL et al (2008) Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J Phys Chem C 112:747–753

    Article  Google Scholar 

  10. Cao J, Xu BY, Luo BD et al (2011) Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties. Catal Commun 13:63–68

    Article  Google Scholar 

  11. Henle J, Simon P, Frenzel A et al (2007) Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions. Chem Mater 19:366–373

    Article  Google Scholar 

  12. Wang YN, Deng KJ, Zhang LZ (2011) Visible light photocatalysis of BiOI and its photocatalytic activity enhancement by in situ ionic liquid modification. J Phys Chem C 115:14300–14308

    Article  Google Scholar 

  13. Xiao X, Zhang WD (2010) Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J Mater Chem 20:5866–5870

    Article  Google Scholar 

  14. Wang WD, Huang FQ, Lin XP et al (2008) Visible-light-responsive photocatalysts xBiOBr-(1–x)BiOI. Catal Commun 9:8–12

    Article  Google Scholar 

  15. Song LM, Zhang SJ, Wei QW (2012) Porous BiOI sonocatalysts: hydrothermal synthesis, characterization, sonocatalytic, and kinetic properties. Ind Eng Chem Res 51:1193–1197

    Article  Google Scholar 

  16. Xia JX, Yin S, Li HM et al (2011) Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid. Langmuir 27:1200–1206

    Article  Google Scholar 

  17. Wang KW, Jia FL, Zhang LZ (2013) Facile construction of low-cost flexible solar cells with p-type BiOI nanoflake arrays fabricated via oriented attachment. Mater Lett 92:354–357

    Article  Google Scholar 

  18. Hao R, Xiao X, Zuo XX et al (2012) Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J Hazard Mater 209–210:137–145

    Article  Google Scholar 

  19. Lei YQ, Wang GH, Song SY et al (2010) Room temperature, template-free synthesis of BiOI hierarchical structures: visible-light photocatalytic and electrochemical hydrogen storage properties. Dalton Trans 39:3273–3278

    Article  Google Scholar 

  20. Ren KX, Zhang K, Liu J et al (2012) Controllable synthesis of hollow/flower-like BiOI microspheres and highly efficient adsorption and photocatalytic activity. CrystEngComm 14:4384–4390

    Article  Google Scholar 

  21. Su MH, He C, Zhu LF et al (2012) Enhanced adsorption and photocatalytic activity of BiOI-MWCNT composites towards organic pollutants in aqueous solution. J Hazard Mater 229–230:72–82

    Article  Google Scholar 

  22. Wilson GJ, Matijasevich AS, Mitchell DRG et al (2006) Modification of TiO2 for enhanced surface properties: finite Ostwald ripening by a microwave hydrothermal process. Langmuir 22:2016–2027

    Article  Google Scholar 

  23. Cao J, Xu BY, Lin HL et al (2012) Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance. Dalton Trans 41:11482–11490

    Article  Google Scholar 

  24. Novokreshchenova MN, Yukhin Y, Bokhonov BB (2005) Highly pure bismuth(III) oxochloride synthesis. Chem Sustain Dev 13:563–568

  25. Cheng HF, Huang BB, Yang KS et al (2010) Facile template-free synthesis of Bi2O2CO3 hierarchical microflowers and their associated photocatalytic activity. ChemPhysChem 10:2167–2173

    Article  Google Scholar 

  26. Ye LQ, Tian LH, Peng TY et al (2011) Synthesis of highly symmetrical BiOI single-crystal nanosheets and their {001} facet-dependent photoactivity. J Mater Chem 21:12479–12484

  27. Liu ZS, Wu BT, Xiang DH et al (2012) Effect of solvents on morphology and photocatalytic activity of BiOBr synthesized by solvothermal method. Mater Res Bull 47:3753–3757

    Article  Google Scholar 

  28. Zeng J, Wang H, Zhang YC et al (2007) Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes. J Phys Chem C 111:11879–11887

    Article  Google Scholar 

  29. Wu CH, Chang HW, Chern JM (2006) Basic dye decomposition kinetics in a photocatalytic slurry reactor. J Hazard Mater 137:336–343

    Article  Google Scholar 

  30. Sun JH, Wang XL, Sun JY et al (2006) Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. J Mol Catal A: Chem 260:241–246

    Article  Google Scholar 

  31. Jiang J, Zhang LZ, Li H et al (2013) Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. Nanoscale 5:10573–10581

    Article  Google Scholar 

  32. Wang H, You TT, Shi WW et al (2012) Au/TiO2/Au as a plasmonic coupling photocatalyst. J Phys Chem C 116:6490–6494

    Article  Google Scholar 

  33. Li YY, Wang JS, Yao HC et al (2011) Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. J Mol Catal A: Chem 334:116–122

    Article  Google Scholar 

  34. Cao J, Xu BY, Lin HL et al (2012) Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B. Catal Commun 26:204–208

    Article  Google Scholar 

  35. Li YX, Wang JX, Peng SQ et al (2010) Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation. Int J Hydrog Energy 35:7116–7126

    Article  Google Scholar 

  36. Amano F, Yamakata A, Nogami K et al (2008) Visible light responsive pristine metal oxide photocatalyst: enhancement of activity by crystallization under hydrothermal treatment. J Am Chem Soc 130:17650–17651

    Article  Google Scholar 

  37. Tong WM, Li LP, Hu WB et al (2010) Systematic control of monoclinic CdWO4 nanophase for optimum photocatalytic activity. J Phys Chem C 114:1512–1519

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51172086, 51272081), the Anhui Provincial Natural Science Foundation (1308085QB42) and the Natural Science Foundation of Educational Committee of Anhui Province (KJ2013B241).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haili Lin or Shifu Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Zhou, C., Cao, J. et al. Ethylene glycol-assisted synthesis, photoelectrochemical and photocatalytic properties of BiOI microflowers. Chin. Sci. Bull. 59, 3420–3426 (2014). https://doi.org/10.1007/s11434-014-0433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0433-0

Keywords

Navigation